已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如圖,P為AD上的一點,滿足∠BPC=∠A,求AP的長;
(2)如果點P在AD邊上移動(點P與點A、D不重合),且滿足∠BPE=∠A,PE交直線BC于點E,同時交直線DC于點Q.
①當(dāng)點Q在線段DC的延長線上時,設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)CE=1時,寫出AP的長.(不必寫解答過程)
(1)∵ABCD是梯形,ADBC,AB=DC.
∴∠A=∠D
∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A
∴∠ABP=∠DPC,
∴△ABP△DPC
AP
CD
=
AB
PD
,即:
AP
2
=
2
5-AP

解得:AP=1或AP=4.

(2)①由(1)可知:△ABP△DPQ
AP
DQ
=
AB
PD
,即:
x
2+y
=
2
5-x
,
y=-
1
2
x2+
5
2
x-2
(1<x<4).
②當(dāng)CE=1時,
∵△PDQ△ECQ,
CE
PD
=
CQ
DQ

1
5-x
=
y
y+2
1
5+x
=
y
y-2
,
y=-
1
2
x2+
5
2
x-2
,
解得:AP=2或3-
5
(舍去).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:直線y=-2x+4交x軸于點A,交y軸于點B,點C為x軸上一點,AC=1,且OC<OA.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A、B、C.
(1)求該拋物線的表達(dá)式;
(2)點D的坐標(biāo)為(-3,0),點P為線段AB上的一點,當(dāng)銳角∠PDO的正切值是
1
2
時,求點P的坐標(biāo);
(3)在(2)的條件下,該拋物線上的一點E在x軸下方,當(dāng)△ADE的面積等與四邊形APCE的面積時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x,y軸上,點D在OA上,且CD=AD,
(1)求直線CD的解析式;
(2)求經(jīng)過B、C、D三點的拋物線的解析式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點P,使△PBC的面積等于矩形的面積?若存在,求出點P的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某幢建筑物,從10m高的窗口A,用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在的平面與墻面垂直,如圖,如果拋物線的最高點M離墻1m,離地面
40
3
m,則水流落地點B離墻的距離OB是( 。
A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求A、B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,半圓O的直徑AB=4,與半圓O內(nèi)切的動圓O1與AB切于點M,設(shè)⊙O1的半徑為y,AM的長為x,則y關(guān)于x的函數(shù)關(guān)系式是______(要求寫出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義[a,b,c]為函數(shù)y=axw+bx+c的特征數(shù),下面給出特征數(shù)為[wm,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當(dāng)m=-3時,函數(shù)圖象的頂點坐標(biāo)是(
1
3
,
8
3
);
②當(dāng)m>大時,函數(shù)圖象截x軸所得的線段長度大于
3
w

③當(dāng)m<大時,函數(shù)在x>
1
時,y隨x的增大而減我;
④當(dāng)m≠大時,函數(shù)圖象經(jīng)過x軸上一一定點.
其1正確的結(jié)論有______.(只需填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),直線y=kx-k2(k為常數(shù),且k>0)與y軸交于點C,與拋物線y=ax2有唯一公共點B,點B在x軸上的正投影為點E,已知點D(0,4).
(1)求拋物線的解析式;
(2)是否存在實數(shù)k,使經(jīng)過D,O,E三點的圓與拋物線的交點恰好為B?若存在,請求出時k的值;若不存在,請說明理由.
(3)如圖(2),連接CE,已知點F(0,1),直線FA與CE相交于點M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個等式中有一個恒成立.請判斷哪一個恒成立,并證明這個成立的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案