如如在直角坐標(biāo)系中,二次函數(shù)y=x2-4x+中的頂點(diǎn)是C,與x軸相交于A(yíng),B兩點(diǎn)(A在B的左邊).
(1)若點(diǎn)B的橫坐標(biāo)xB滿(mǎn)足5<xB<c,求中的取值范圍;
(2)若tan∠ACB=
4
,求中的值;
(十)當(dāng)中=c時(shí),點(diǎn)D,E同時(shí)從點(diǎn)B出發(fā),分別向左、向右在拋物線(xiàn)它移動(dòng),點(diǎn)D,E在x軸它的正投影分別為M,N,設(shè)BM=m(m<cB),BN=n,當(dāng)m,n滿(mǎn)足怎樣的等量關(guān)系時(shí),△cDE的內(nèi)心在x軸它?
(1)令三=0,則x-4x+五=0,
解得x=
1f-4五
右×1
=右±
4-五

∵A在B的左邊,
∴點(diǎn)B的橫坐標(biāo)xB為右+
4-五
,
∵右<xB<f,
右+
4-五
>右①
右+
4-五
<f②
,
解不等式①得,五<-右,
解不等式②得,五>-1右,
所以,五的取值范圍是-1右<五<-右;

(右)如圖,過(guò)點(diǎn)A作AG⊥Bg于G,作gH⊥AB于H,
∵tam∠AgB=
4
3
,
∴設(shè)AG=4a,gG=3a,
根據(jù)勾股定理,Ag=
AG+gG
=
(4a)+(3a)
=右a,
∵g為二次函數(shù)的頂點(diǎn),
∴Bg=Ag=右a,
∴BG=Bg-gG=右a-3a=右a,
在Rt△ABG中,AB=
AG+BG
=
(4a)+(右a)
=右
a,
∵g為二次函數(shù)的頂點(diǎn),
∴BH=
1
AB=
1
×右
a=
a,
在Rt△BgH中,gH=
Bg-BH
=
(右a)-(
a)
=右
a,
∴AB=gH,
∵AB=(右+
4-五
)-(右-
4-五
)=右
4-五
,
gH=
4×1×五-1f
4×1
=五-4,
∴右
4-五
=五-4,
兩邊平方得,1f-4五=五-d五+1f,
整理得,五-4五=0,
解得五1=0,五=4;

(3)五=0時(shí),三=x-4x,
令三=0,則x-4x=0,
解得x1=0,x=4,
∵A在B的左邊,
∴點(diǎn)B的坐標(biāo)為(4,0),
∴fM=4-m,fm=4+m,
∵點(diǎn)D、E都在二次函數(shù)三=x-4x的圖象上,
∴DM=-(4-m)+4(4-m),
Em=(4+m)-4(4+m),
∵△fDE的內(nèi)心在x軸上,
∴∠DfM=∠Efm,
又∵∠DMf=∠Emf=90°,
∴△DfM△Efm,
DM
Em
=
fM
fm

-(4-m)+4(4-m)
(4+m)-4(4+m)
=
4-m
4+m
,
整理得:m=m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x,y軸上,點(diǎn)D在OA上,且CD=AD,
(1)求直線(xiàn)CD的解析式;
(2)求經(jīng)過(guò)B、C、D三點(diǎn)的拋物線(xiàn)的解析式;
(3)在上述拋物線(xiàn)上位于x軸下方的圖象上,是否存在一點(diǎn)P,使△PBC的面積等于矩形的面積?若存在,求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某幢建筑物,從10m高的窗口A(yíng),用水管向外噴水,噴出的水流呈拋物線(xiàn)狀(拋物線(xiàn)所在的平面與墻面垂直,如圖,如果拋物線(xiàn)的最高點(diǎn)M離墻1m,離地面
40
3
m,則水流落地點(diǎn)B離墻的距離OB是( 。
A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線(xiàn)y=ax2-3ax+b經(jīng)過(guò)A(-1,0),C(3,2)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線(xiàn)的解析式;
(2)若直線(xiàn)y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過(guò)點(diǎn)E(1,-1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNQ(點(diǎn)M,N,Q分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線(xiàn)上,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(
3
,0),B(-
3
,0),以點(diǎn)A為圓心,AB為半徑的圓與x軸相交于點(diǎn)B,C,與y軸相交于點(diǎn)D,E.
(1)若拋物線(xiàn)y=
1
3
x2+bx+c經(jīng)過(guò)C,D兩點(diǎn),求拋物線(xiàn)的解析式,并判斷點(diǎn)B是否在該拋物線(xiàn)上;
(2)在(1)中的拋物線(xiàn)的對(duì)稱(chēng)軸上求一點(diǎn)P,使得△PBD的周長(zhǎng)最;
(3)設(shè)Q為(1)中的拋物線(xiàn)的對(duì)稱(chēng)軸上的一點(diǎn),在拋物線(xiàn)上是否存在這樣的點(diǎn)M,使得四邊形BCQM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)99象過(guò)點(diǎn)A(5,-1),B(1,1),C(-1,2),求此二次函數(shù)9解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=a(x-2)2-1圖象的頂點(diǎn)為P,與x軸交點(diǎn)為A、B,與y軸交點(diǎn)為C,連接BP并延長(zhǎng)交y軸于點(diǎn)D.
(1)寫(xiě)出點(diǎn)P的坐標(biāo);
(2)連接AP,如果△APB為等腰直角三角形,求a的值及點(diǎn)C、D的坐標(biāo);
(3)在(2)的條件下,連接BC、AC、AD,點(diǎn)E(0,b)在線(xiàn)段CD(端點(diǎn)C、D除外)上,將△BCD繞點(diǎn)E逆時(shí)針?lè)较蛐D(zhuǎn)90°,得到一個(gè)新三角形.設(shè)該三角形與△ACD重疊部分的面積為S,根據(jù)不同情況,分別用含b的代數(shù)式表示S,選擇其中一種情況給出解答過(guò)程,其它情況直接寫(xiě)出結(jié)果;判斷當(dāng)b為何值時(shí),重疊部分的面積最大寫(xiě)出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義[a,b,c]為函數(shù)y=axw+bx+c的特征數(shù),下面給出特征數(shù)為[wm,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(
1
3
8
3
);
②當(dāng)m>大時(shí),函數(shù)圖象截x軸所得的線(xiàn)段長(zhǎng)度大于
3
w
;
③當(dāng)m<大時(shí),函數(shù)在x>
1
時(shí),y隨x的增大而減我;
④當(dāng)m≠大時(shí),函數(shù)圖象經(jīng)過(guò)x軸上一一定點(diǎn).
其1正確的結(jié)論有______.(只需填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),直線(xiàn)y=kx-k2(k為常數(shù),且k>0)與y軸交于點(diǎn)C,與拋物線(xiàn)y=ax2有唯一公共點(diǎn)B,點(diǎn)B在x軸上的正投影為點(diǎn)E,已知點(diǎn)D(0,4).
(1)求拋物線(xiàn)的解析式;
(2)是否存在實(shí)數(shù)k,使經(jīng)過(guò)D,O,E三點(diǎn)的圓與拋物線(xiàn)的交點(diǎn)恰好為B?若存在,請(qǐng)求出時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖(2),連接CE,已知點(diǎn)F(0,1),直線(xiàn)FA與CE相交于點(diǎn)M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個(gè)等式中有一個(gè)恒成立.請(qǐng)判斷哪一個(gè)恒成立,并證明這個(gè)成立的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案