【題目】用小立方塊搭一個(gè)幾何體,使它從正面和上面看到的形狀如圖所示,從上面看到形狀中小正方形中的字母表示在該位置上小立方塊的個(gè)數(shù),請(qǐng)問:

1各表示幾? 答:_____ _____;

2)這個(gè)幾何體最少由_____個(gè)小立方塊搭成,最多由____個(gè)小立方塊搭成;

3)能搭出滿足條件的幾何體共有____種情況,其中從左面看這個(gè)幾何體的形狀圖共有____種,請(qǐng)?jiān)谒o網(wǎng)格圖中畫出其中的任意一種.

【答案】1b=1,c=3;(2911;(3)詳見解析.

【解析】

試題(1)由主視圖可知,第二列小立方體的個(gè)數(shù)均為1,第3列小正方體的個(gè)數(shù)為3,那么b=1,c=3;(2)第一列小立方體的個(gè)數(shù)最多為2+2+2,最少為2+1+1,那么加上其他兩列小立方體的個(gè)數(shù)即可;(3)能搭出滿足條件的幾何體共有7種情況,其中從左面看這個(gè)幾何體的形狀圖共有4種,請(qǐng)?jiān)谒o網(wǎng)格圖中畫出其中的任意一種即可.

試題解析:解:(1b=1c=3;

2)最少由_9___個(gè)小立方塊搭成,最多由11_個(gè)小立方塊搭成。

3)能搭出滿足條件的幾何體共有7種情況,其中從左面看這個(gè)幾何體的形狀圖共有4種,請(qǐng)?jiān)谒o網(wǎng)格圖中畫出其中的任意一種.下圖供參考:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CD是直線AB上的兩點(diǎn),∠1+∠2=180°,DE平分∠CDF,EFAB.

(1)猜想:CEDF是否平行?請(qǐng)說明理由;

(2)若∠DCE=130°,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣7×(﹣5)﹣90÷(﹣15

2)(﹣13﹣(1÷3×[(﹣225]

3)(﹣12×÷|3|+(﹣0.25÷6

4)﹣3212×(﹣+4÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿對(duì)角線BD向上折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過點(diǎn)DDGBE,交BC于點(diǎn)G,連接FGBD于點(diǎn)O.

①判斷四邊形BFDG的形狀,并說明理由;

②若AB=6,AD=8,求FG的長(zhǎng).

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是最小的兩位正整數(shù),且滿足,請(qǐng)回答問題:

(1)請(qǐng)直接寫出的值: =

(2)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)分別為A、B、C ,點(diǎn)P為該數(shù)軸上的動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為,點(diǎn)P在點(diǎn)A與點(diǎn)C之間運(yùn)動(dòng)時(shí)(包含端點(diǎn)),則AP ,PC

(3)在(1)(2)的條件下,若點(diǎn)MA出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),當(dāng)點(diǎn)M運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)NA出發(fā),以每秒3個(gè)單位長(zhǎng)度向C點(diǎn)運(yùn)動(dòng),N點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回點(diǎn)A,設(shè)點(diǎn)M 移動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)N開始運(yùn)動(dòng)后,請(qǐng)用含t的代數(shù)式表示M、N兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一道題:“當(dāng)a2019b=-3時(shí),求多項(xiàng)式a2b3abb2(4a2b3abb2)(3a2b3ab)5的值”,馬小虎做題時(shí)把a2019題抄成a=-2019,但他做出的結(jié)果卻是正確的,你知道這是怎么回事嗎?請(qǐng)說明理由,并求出結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(教材回顧)

七上教材有這樣一段文字:人們通過長(zhǎng)期觀察發(fā)現(xiàn)如果早晨天空中棉絮的高積云,那么午后常有雷雨降臨,于是有了“朝有破絮云,午后雷雨臨”的諺語.在數(shù)學(xué)的學(xué)習(xí)過程中,我們經(jīng)常用這樣的方法探究規(guī)律.

(數(shù)學(xué)問題)

四邊形有4個(gè)頂點(diǎn),如果在它的內(nèi)部再畫n個(gè)點(diǎn),并以這(n+4)個(gè)點(diǎn)為頂點(diǎn)畫三角形,那么最多可以剪得多少個(gè)這樣的三角形?

(問題探究)

為了解決這個(gè)問題,我們可以從n=1,n=2n=3等具體的、簡(jiǎn)單的情形入手,探索最多可以剪得的三角形個(gè)數(shù)的變化規(guī)律.

(問題解決)

1)當(dāng)四邊形內(nèi)有4個(gè)點(diǎn)時(shí),最多剪得的三角形個(gè)數(shù)為______________;

2)你發(fā)現(xiàn)的變化規(guī)律是:四邊形內(nèi)的點(diǎn)每增加1個(gè),最多剪得的三角形增加______個(gè);

3)猜想:當(dāng)四邊形內(nèi)點(diǎn)的個(gè)數(shù)為n時(shí),最多可以剪得_______________個(gè)三角形;像這樣通過對(duì)簡(jiǎn)單情形的觀察、分析,從特殊到一般地探索這類現(xiàn)象的規(guī)律、提出猜想的思想方法稱為歸納.

(問題拓展)

請(qǐng)你嘗試用歸納的方法探索4+6+8+10+…+2n+(2n+2)的和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長(zhǎng),根據(jù)企業(yè)財(cái)報(bào),某網(wǎng)站得到如下統(tǒng)計(jì)表:

年份

2014

2015

2016

2017(預(yù)計(jì))

快遞件總量(億件)

140

207

310

450

電商包裹件(億件)

98

153

235

351

(1)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達(dá)到675億件,請(qǐng)估計(jì)其中“電商包裹件”約為多少億件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,以原點(diǎn)A為圓心,適當(dāng)?shù)拈L(zhǎng)為半徑畫弧,分別交AC,AB于點(diǎn)MN,再分別以點(diǎn)MN為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,作射線AEBC于點(diǎn)D,若BD5,AB15,△ABD的面積30,則AC+CD的值是( 。

A. 16B. 14C. 12D. 5+4

查看答案和解析>>

同步練習(xí)冊(cè)答案