【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
【答案】(1)B的坐標(biāo)為(,4);(2)證明見解析;(3)1.
【解析】
試題分析:(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識(shí),即可求得AB與OA的長(zhǎng),即可求得點(diǎn)B的坐標(biāo);
(2)首先可得CE∥AB,D是OB的中點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;
(3)首先設(shè)OG的長(zhǎng)為x,由折疊的性質(zhì)可得:AG=CG=8﹣x,然后根據(jù)勾股定理即可求得OG的長(zhǎng).
試題解析:(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OBcos30°==,AB=OBsin30°=8×=4,∴點(diǎn)B的坐標(biāo)為(,4);
(2)證明:∵∠OAB=90°,∴AB⊥x軸,∵y軸⊥x軸,∴AB∥y軸,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4,∴DB=AB=4,∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等邊三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四邊形ABCE是平行四邊形;
(3)解:設(shè)OG的長(zhǎng)為x,∵OC=OB=8,∴CG=8﹣x,由折疊的性質(zhì)可得:AG=CG=8﹣x,在Rt△AOG中,,即,解得:x=1,即OG=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)求證:在運(yùn)動(dòng)過(guò)程中,不管t取何值,都有S△AED=2S△DGC .
(2)當(dāng)t取何值時(shí),△DFE與△DMG全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)“中小學(xué)生每天鍛煉1小時(shí)”的號(hào)召,某校開展了形式多樣的“陽(yáng)光體育”活動(dòng),小明對(duì)某班同學(xué) 參加鍛煉的情況進(jìn)行了調(diào)查與統(tǒng)計(jì),并繪制了下面的圖1與圖2.
根據(jù)你對(duì)圖1與圖2的理解,回答下列問(wèn)題:
(1)小明調(diào)查的這個(gè)班級(jí)有名學(xué)生.
(2)請(qǐng)你將圖1中“乒乓球”部分補(bǔ)充完整.
(3)若這個(gè)學(xué)校共有1200名學(xué)生,估計(jì)參加乒乓球活動(dòng)的學(xué)生有名學(xué)生.
(4)求出扇形統(tǒng)計(jì)圖中表示“足球”的扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖像交于(1,3),B(3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)連接AO,BO,求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點(diǎn),AD=2BD,BE=CE,設(shè)△ADF的面積為S1 , △CEF的面積為S2 , 若S△ABC=12,則S1﹣S2的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2x+m的圖象過(guò)點(diǎn)A(3,0).
(1)求m的值;
(2)當(dāng)x取何值時(shí),函數(shù)值y隨x的增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校七年級(jí)男生的體能情況,從該校七年級(jí)抽取50名男生進(jìn)行1分鐘跳繩測(cè)試,把所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).已知圖中從左到右第一、第二、第三、第四小組的頻數(shù)的比為1:3:4:2.
(1)求第二小組的頻數(shù)和頻率;
(2)求所抽取的50名男生中,1分鐘跳繩次數(shù)在100次以上(含100次)的人數(shù)占所抽取的男生人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題是( )
A. 四個(gè)角相等的菱形是正方形 B. 對(duì)角線垂直的四邊形是菱形
C. 有兩邊相等的平行四邊形是菱形 D. 兩條對(duì)角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿著過(guò)AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A2處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過(guò)AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過(guò)第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015,到BC的距離記為h2015.若h1=1,則h2015的值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com