【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( 。

A. AD=AE B. AB=AC C. BD=AE D. AD=CE

【答案】A

【解析】∵∠BAC=90°,BD⊥DE,CE⊥DE,

∴∠D=∠E=∠BAC=90°,

∴∠B+∠BAD=90°,∠BAD+∠CAE=90°

∴∠B=∠CAE,

A. ADAE不是對(duì)應(yīng)邊,即不能判斷△ABD≌△CAE,故本選項(xiàng)正確;

B. 在△ABD和△CAE

,

∴△ABD≌△CAE(AAS),故本選項(xiàng)錯(cuò)誤;

C. 在△ABD和△CAE

,

∴△ABD≌△CAE(AAS),故本選項(xiàng)錯(cuò)誤;

D. 在△ABD和△CAE

,

∴△ABD≌△CAE(AAS),故本選項(xiàng)錯(cuò)誤;

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,且∠1=20°,∠2=45°+α,∠3=60°-α,∠4=40°-α,∠5=30°.則α的值為( )

A. 10° B. 15° C. 20° D. 25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】貴陽市某消防支隊(duì)在一幢居民樓前進(jìn)行消防演習(xí),如圖所示,消防官兵利用云梯成功救出在C處的求救者后,發(fā)現(xiàn)在C處正上方17米的B處又有一名求救者,消防官兵立刻升高云梯將其救出,已知點(diǎn)A與居民樓的水平距離是15米,且在A點(diǎn)測(cè)得第一次施救時(shí)云梯與水平線的夾角∠CAD=60°,求第二次施救時(shí)云梯與水平線的夾角∠BAD的度數(shù)(結(jié)果精確到1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式4xx3因式分解的結(jié)果是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“知識(shí)改變命運(yùn),科技繁榮祖國”,我市中小學(xué)每年都要舉辦一屆科技運(yùn)動(dòng)會(huì),下圖為我市某校今年參加科技運(yùn)動(dòng)會(huì)航模比賽(包括空模、海模、車模、建模四個(gè)類別)的參賽人數(shù)統(tǒng)計(jì)圖:

(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人:

(2)該校參加航模比賽的總?cè)藬?shù)是 人,空模所在扇形的圓心角的度數(shù)是 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎(jiǎng),今年我市中小學(xué)參加航模比賽人共有2485人,請(qǐng)你估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCDDE是∠ADC的角平分線,交BC于點(diǎn)E

1求證:CD=CE

2)若BE=CE,求證:AEDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】18世紀(jì)最杰出的瑞士數(shù)學(xué)家歐拉,最先把關(guān)于x的多項(xiàng)式用符號(hào)“fx)”表示,如fx)=﹣3x2+2x1,把x=﹣2時(shí)多項(xiàng)式的值表示為f(﹣2),則f(﹣2)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組線段長為邊,不能組成三角形的是( )

A.87、13B.34、12C.5、53D.5、7、11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長54米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為2米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:請(qǐng)根據(jù)上面的信息,解決問題:

1)設(shè)ABx米(x0),試用含x的代數(shù)式表示BC的長;

2)請(qǐng)你判斷誰的說法正確,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案