【題目】某商場(chǎng)投入13800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:

類別/單價(jià)

成本價(jià)

銷售價(jià)(元/箱)

24

36

33

48


(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?

【答案】
(1)解:設(shè)商場(chǎng)購(gòu)進(jìn)甲種礦泉水x箱,購(gòu)進(jìn)乙種礦泉水y箱,由題意得

解得:

答:商場(chǎng)購(gòu)進(jìn)甲種礦泉水300箱,購(gòu)進(jìn)乙種礦泉水200箱.


(2)解:300×(36﹣24)+200×(48﹣33)

=3600+3000

=6600(元).

答:該商場(chǎng)共獲得利潤(rùn)6600元.


【解析】(1)設(shè)商場(chǎng)購(gòu)進(jìn)甲種礦泉水x箱,購(gòu)進(jìn)乙種礦泉水y箱,根據(jù)投入13800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,列出方程組解答即可;(2)總利潤(rùn)=甲的利潤(rùn)+乙的利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)學(xué)興趣小組想測(cè)量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD與地面成30°角,且此時(shí)測(cè)得1米桿的影長(zhǎng)為2米,則電線桿的高度約為米(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料,回答問(wèn)題:已知(x2)(62x)>0,求x的取值范圍.

解:根據(jù)題意,得

分別解這兩個(gè)不等式組,得x2x<-3

故當(dāng)x2x<-3時(shí),(x2)(62x)>0

。1由(x2)(62x)>0,得出不等式組體現(xiàn)了____思想.

。2試?yán)蒙鲜龇椒,求不等式?/span>x3)(1x)<0的解集.

附加題15分,不計(jì)入總分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn)A(﹣3,0),F(xiàn)(8,0),B(0,4)三點(diǎn)

(1)求拋物線解析式及對(duì)稱軸;
(2)若點(diǎn)D在線段FB上運(yùn)動(dòng)(不與F,B重合),過(guò)點(diǎn)D作DC⊥軸于點(diǎn)C(x,0),將△FCD沿CD向左翻折,點(diǎn)B對(duì)應(yīng)點(diǎn)為點(diǎn)E,△CDE與△FBO重疊部分面積為S.
①試求出S與x之間的函數(shù)關(guān)系式,并寫出自變量取值范圍.
②是否存在這樣的點(diǎn)C,使得△BDE為直角三角形,若存在,求出C點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線對(duì)稱軸上有一點(diǎn)M,平面內(nèi)有一點(diǎn)N,若以A,B,M,N四點(diǎn)組成的四邊形為菱形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程x2+2kx+k2﹣2k+1=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求實(shí)數(shù)k的取值范圍;
(2)若x12+x22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=-x+4的圖象與x軸、y軸的交點(diǎn)分別為A、B,點(diǎn)P在直線y=2x.

1)若點(diǎn)P是一次函數(shù)y=-x+4的圖象與直線y=2x的交點(diǎn),求OBP的面積;

2)若點(diǎn)P的坐標(biāo)為(3,6),求ABP的面積;

3)若ABP的面積為12時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC 上的點(diǎn),∠1=∠2,∠C=∠D

求證: DF∥AC

證明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),

∴ ∠3=∠4( ),

__________( ).

∴ ∠C=∠ABD( ).

∵ ∠C=∠D( ),

∴ ∠D =__________( ).

∴ DF∥AC( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線,經(jīng)過(guò)A1,0)、B7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM=SABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)如圖2,E是線段AC上的動(dòng)點(diǎn),F是線段BC上的動(dòng)點(diǎn),AFBE相交于點(diǎn)P

①若CE=BF,試猜想AFBE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;

②若AF=BE,當(dāng)點(diǎn)EA運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)(不需要寫過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知線段AB,∠α,∠β,分別過(guò)A、B∠CAB=∠α,∠CBA=∠β.(不寫作法,保留作圖痕跡)

【答案】答案見解析

【解析】分析:根據(jù)作一個(gè)角等于已知角的方法,分別以A、B為頂點(diǎn),作圖即可.

本題解析:

如圖所示:

型】解答
結(jié)束】
14

【題目】已知:線段、;

求作:ABC,使, ,

查看答案和解析>>

同步練習(xí)冊(cè)答案