【題目】如圖1,拋物線,經(jīng)過(guò)A(1,0)、B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是S△ABM=S△ABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)(不需要寫(xiě)過(guò)程).
【答案】(1);(2)點(diǎn)M的坐標(biāo)為(9,4)或(﹣1,4);(3)①AF=BE,∠APB=120°;②或.
【解析】解:(1)根據(jù)題意,可設(shè)拋物線的解析式為y=ax2+bx+.
∵將點(diǎn)A、B的坐標(biāo)代入得: 解得:a=,b=﹣2,
∴拋物線的解析式為y=x2﹣2x+.
(2)存在點(diǎn)M,使得S△AMB=S△ABC.
理由:如圖所示:過(guò)點(diǎn)C作CK⊥x軸,垂足為K.
∵△ABC為等邊三角形,
∴AB=BC=AC=6,∠ACB=60°.
∵CK⊥AB,
∴KA=BK=3,∠ACK=30°.
∴CK=3.
∴S△ABC=ABCK=×6×3=9.
∴S△ABM=×=12.
設(shè)M(a,a2﹣2a+).
∴AB|yM|=12,即×6×(a2﹣2a)=12.
解得=9, =﹣1.
∴M1(9,4),M2(﹣1,4).
(3)①結(jié)論:AF=BE,∠APB=120°.
理由:如圖所示;
∵△ABC為等邊三角形,
∴BC=AB,∠C=∠ABF.
∵在△BEC和△AFB中, ,
∴△BEC≌△AFB.
∴AF=BE,∠CBE=∠BAF.
∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.
∴∠APB=180°﹣∠PAB﹣∠ABP=180°﹣60°=120°.
②點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)投入13800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷(xiāo)售價(jià)如表所示:
類(lèi)別/單價(jià) | 成本價(jià) | 銷(xiāo)售價(jià)(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年12月29日至31日,黔南州第十屆旅游產(chǎn)業(yè)發(fā)展大會(huì)在“中國(guó)長(zhǎng)壽之鄉(xiāng)”﹣﹣羅甸縣舉行,從中尋找到商機(jī)的人不斷涌現(xiàn),促成了羅甸農(nóng)民工返鄉(xiāng)創(chuàng)業(yè)熱潮,某“火龍果”經(jīng)營(yíng)戶(hù)有A、B兩種“火龍果”促銷(xiāo),若買(mǎi)2件A種“火龍果”和1件B種“火龍果”,共需120元;若買(mǎi)3件A種“火龍果”和2件B種“火龍果”,共需205元.
(1)設(shè)A,B兩種“火龍果”每件售價(jià)分別為a元、b元,求a、b的值;
(2)B種“火龍果”每件的成本是40元,根據(jù)市場(chǎng)調(diào)查:若按(1)中求出的單價(jià)銷(xiāo)售,該“火龍果”經(jīng)營(yíng)戶(hù)每天銷(xiāo)售B種“火龍果”100件;若銷(xiāo)售單價(jià)每上漲1元,B種“火龍果”每天的銷(xiāo)售量就減少5件.
①求每天B種“火龍果”的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)(x)元之間的函數(shù)關(guān)系?
②求銷(xiāo)售單價(jià)為多少元時(shí),B種“火龍果”每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=5,AB的垂直平分線DE交AB、AC于E、D.
(1)若△BCD的周長(zhǎng)為8,求BC的長(zhǎng);
(2)若∠A=40°,求∠DBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.
(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A= ;
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:(x + 2)0 = 1,則( )
A.x = 3B.x = 1C.x為任意實(shí)數(shù)D.x ≠- 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com