【題目】綜合題。
(1)如圖①,四邊形ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,探究BF,DE,EF之間的數(shù)量關(guān)系,第一學(xué)習(xí)小組合作探究后,得到DE﹣BF=EF,請(qǐng)證明這個(gè)結(jié)論;
(2)若(1)中的點(diǎn)G在CB的延長(zhǎng)線上,其余條件不變,請(qǐng)?jiān)趫D②中畫(huà)出圖形,并直接寫(xiě)出此時(shí)BF,DE,EF之間的數(shù)量關(guān)系;
(3)如圖③,四邊形ABCD內(nèi)接于⊙O,AB=AD,E,F(xiàn)是AC上的兩點(diǎn),且滿(mǎn)足∠AED=∠BFA=∠BCD,試判斷AC,DE,BF之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】
(1)解:如圖1中,結(jié)論:DE﹣BF=EF.理由如下:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,

∵BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,

∴∠AFB=∠DEA=90°,

∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,

∴∠BAF=∠ADE,

在△ABF和△DAE中,

,

∴△ABF≌△DAE,

∴BF=AE,AF=DE,

∵AF﹣AE=EF,

∴DE﹣BF=EF


(2)解:結(jié)論EF=DE+BF.理由如下:

如圖2中,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,

∵BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,

∴∠AFB=∠DEA=90°,

∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,

∴∠BAF=∠ADE,

在△ABF和△DAE中,

,

∴△ABF≌△DAE,

∴BF=AE,AF=DE,

∴EF=AF+AF=DE+BF


(3)解:如圖3中,結(jié)論:AC=BF+DE.理由如下:

連接BD.

∵∠DBC+∠BDC+∠DCB=180°,∠DAE+∠ADE+∠AED=180°,

又∵∠DBC=∠DAE,∠DCB=∠AED,

∴∠ADE=∠BDC,

∵∠BDC=∠BAF,

∴∠ADE=∠BAF,∵AD=AB,∠AED=∠AFB,

∴△ADE≌△BAF,

∴AE=BF,

∵AD=AB,

∴∠ADB=∠ABD=∠ACD,

∵∠ADE=∠CDB,

∴∠CDE=∠ADB,

∴∠EDC=∠ECD,

∴DE=CE,

∴AC=BF+DE


【解析】(1)如圖1中,結(jié)論:DE﹣BF=EF.只要證明△ABF≌△DAE,即可解決問(wèn)題.(2)結(jié)論EF=DE+BF.證明方法類(lèi)似(1).(3)如圖3中,結(jié)論:AC=BF+DE.只要證明△ADE≌△BAF以及DE=EC即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,.點(diǎn)E、F分別是邊AB、AD上的點(diǎn),且滿(mǎn)足,連結(jié)EF.

(1)求證: 為等腰三角形;

(2)若,求的面積;

(3)若GCE的中點(diǎn),連結(jié)BG并延長(zhǎng)交DC于點(diǎn)H,連結(jié)FH,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶(hù)家庭的水費(fèi),月用水量不超過(guò)30立方米時(shí),按2元/立方米計(jì)費(fèi);月用水量超過(guò)30立方米時(shí),其中的30立方米仍按2元/立方米收費(fèi),超過(guò)部分按2.5元/立方米計(jì)費(fèi).設(shè)每戶(hù)家庭月用水量為x立方米.

(1)當(dāng)x不超過(guò)30時(shí),應(yīng)收多少水費(fèi)(用x的代數(shù)式表示);當(dāng)x超過(guò)30時(shí),應(yīng)收多少水費(fèi)(用x的代數(shù)式表示);

(2)小明家四月份用水20立方米,五月份用水36立方米,請(qǐng)幫小明計(jì)算一下他家這兩個(gè)月一共應(yīng)交多少元水費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,點(diǎn)E在AD上,且DE=DC.
(1)求證:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,B=90°,且AD=12cm,AB=8cm,DC=10cm,若動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒2cm的速度沿線段AD向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)QC點(diǎn)出發(fā)以每秒3cm的速度沿CBB點(diǎn)運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問(wèn)題:

1BC= cm;

2)當(dāng)t為多少時(shí),四邊形PQCD成為平行四邊形?

3)當(dāng)t為多少時(shí),四邊形PQCD為等腰梯形?

4)是否存在t,使得DQC是等腰三角形?若存在,請(qǐng)求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B分別為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)是﹣30,點(diǎn)B表示的數(shù)是50.

(1)請(qǐng)寫(xiě)出線段AB中點(diǎn)M表示的數(shù)是   

(2)現(xiàn)有一只螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左移動(dòng),同時(shí)另一只螞蟻Q恰好從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右移動(dòng),設(shè)兩只螞蟻在數(shù)軸上的點(diǎn)C相遇.

①求A、B兩點(diǎn)間的距離;

②求兩只螞蟻在數(shù)軸上的點(diǎn)C相遇時(shí)所用的時(shí)間;

③求點(diǎn)C對(duì)應(yīng)的數(shù)是多少?

(3)若螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí)另一只螞蟻恰好從A點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸也向左運(yùn)動(dòng),設(shè)兩只螞蟻在數(shù)軸上的D點(diǎn)相遇,求D點(diǎn)表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在青山區(qū)海綿城市工程中,某工程隊(duì)接受一段道路施工的任務(wù),計(jì)劃從201610月初至20179月底(12個(gè)月)完成施工3個(gè)月后,實(shí)行倒計(jì)時(shí),提高工作效率,剩余工程量與施工時(shí)間的關(guān)系如圖所示,那么按提高工作效率后的速度做完全部工程,則工期可縮短________個(gè)月.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形,,過(guò)點(diǎn),垂足為,并延長(zhǎng),使,聯(lián)結(jié).

(1)求證:四邊形是平行四邊形。

(2)聯(lián)結(jié),如果

查看答案和解析>>

同步練習(xí)冊(cè)答案