【題目】如圖,拋物線軸交于點,頂點坐標且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關(guān)于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結(jié)論正確的個數(shù)為( )

A. 1B. 2C. 3D. 4

【答案】B

【解析】

逐一分析4條結(jié)論是否正確:①根據(jù)拋物線的頂點坐標,得出對稱軸為x=1,再根據(jù)拋物線的對稱性得出①正確;②根據(jù)拋物線的對稱軸為x=1,即可得出b+2a=0,再根據(jù)開口方向,即可得出②正確;③根據(jù)頂點坐標且開口向下,得出直線與拋物線沒有交點,即可得出③錯誤;④拋物線開口向下,對稱軸為x=1,有最大值,再根據(jù)x=m時的函數(shù)值為,由此即可得出④錯誤,綜上即可得出結(jié)論.

解:①∵拋物線y=ax2+bx+ca≠0)的頂點坐標

∴對稱軸為x=1,
∵拋物線軸交于點,

∴則關(guān)于對稱軸x=1的對稱點的坐標為

∴拋物線經(jīng)過點;∴①正確

②∵拋物線的對稱軸為x=1

-=1,∴-2a=b,∴2a+b=0

∵開口向下,∴a

;

∴②正確;
③∵

∵頂點坐標且開口向下,

∴直線與拋物線沒有交點,

∴關(guān)于的方程沒有實數(shù)根;

∴③錯誤;

④∵拋物線y=ax2+bx+ca≠0)的對稱軸為x=1,開口向下

∴當(dāng)x=1,

∵當(dāng)x=t時,y= at2+bt+c

為任意實數(shù)


∴④錯誤.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )

A.①②④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知C34),以點C為圓心的圓與y軸相切.點A、Bx軸上,且OAOB.點P為⊙C上的動點,∠APB90°,則AB長度的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠Ba,DEAC于點E,下列結(jié)論:①AD2AEAB;②1.8≤AE5;⑤當(dāng)AD時,△ABD≌△DCE;④△DCE為直角三角形,BD46.25.其中正確的結(jié)論是_____.(把你認為正確結(jié)論序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,點在第一象限,,點上一點,,

1)求證:;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是上海世博園內(nèi)的一個矩形花園,花園長為100米,寬為50米,在它的四角各建有一個同樣大小的正方形觀光休息亭,四周建有與觀光休息亭等寬的觀光大道,其余部分(圖中陰影部分)種植的是不同花草.已知種植花草部分的面積為36002,那么矩形花園各角處的正方形觀光休息亭的邊長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠DAB45°,AB2,P為線段AB上一動點,且不與點A重合,過點PPEABAD于點E,將∠A沿PE折疊,點A落在直線AB上點F處,連接DF、CF,當(dāng)△CDF為等腰三角形時,AP的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為(  )

A. B. 2 C. D. 2

查看答案和解析>>

同步練習(xí)冊答案