【題目】如圖,在平面直角坐標系中,已知C3,4),以點C為圓心的圓與y軸相切.點A、Bx軸上,且OAOB.點P為⊙C上的動點,∠APB90°,則AB長度的最大值為_____

【答案】16

【解析】

連接OC并延長,交⊙C上一點P,以O為圓心,以OP為半徑作⊙O,交x軸于A、B,此時AB的長度最大,根據(jù)勾股定理和題意求得OP8,則AB的最大長度為16

解:連接OC并延長,交⊙C上一點P,以O為圓心,以OP為半徑作⊙O,交x軸于A、B,此時AB的長度最大,

C34),

OC5,

∵以點C為圓心的圓與y軸相切.

∴⊙C的半徑為3

OPOAOB8,

AB是直徑,

∴∠APB90°,

AB長度的最大值為16

故答案為:16

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,且,點外一點,且,分別切于點、兩點.的延長線交于點

1)求證:;

2)填空

①當________時,四邊形是正方形.

②當_________時,為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y交于E,F兩點,若AB2EF,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣33),B(﹣52),C(﹣1,1).

1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為12,且ABC位于點C的異側,并表示出點A1的坐標.

2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C

3)在(2)的條件下求出點B經(jīng)過的路徑長(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+3a≠0)經(jīng)過點A(1,0)和點B(3,0),與y軸交于點C

1)求此拋物線的解析式;

2)若點P是直線BC下方的拋物線上一動點(不點B,C重合),過點Py軸的平行線交直線BC于點D,設點P的橫坐標為m

①用含m的代數(shù)式表示線段PD的長.

②連接PB,PC,求PBC的面積最大時點P的坐標.

3)設拋物線的對稱軸與BC交于點E,點M是拋物線的對稱軸上一點,Ny軸上一點,是否存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形?如果存在,請直接寫出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D

(1)求證:△DAC∽△DBA;

(2)過點C作⊙O的切線CEAD于點E,求證:CEAD

(3)若點F為直徑AB下方半圓的中點,連接CFAB于點G,且AD6,AB3,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以點O為圓心的圓分別交x軸的正半軸于點M,交y軸的正半軸于點N.劣弧的長為,直線x軸、y軸分別交于點AB

(1)求證:直線AB與⊙O相切;

(2)求圖中所示的陰影部分的面積(結果用π表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,分別在邊上,點分別在邊上,且

如圖2,過點于點過點于點可知四邊形四邊形四邊形四邊形都是矩形,即,通過證明可求得的值為_

如圖3,在正方形中,點分別在邊上,于點,則的值為

如圖4,在的條件下,延長的延長線于點連接于點.若的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點

1)求反比例函數(shù)的解析式;

2)將直線,沿軸正方向向上平移個單位長度得到的新直線與反比例函數(shù)的圖象只有一個公共點,求新直線的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案