【題目】如圖,點(diǎn)C為線段BD上的點(diǎn),分別以BC,CD為邊作等邊三角形ABC和等邊三角形ECD,連接BE交AC于點(diǎn)M,連接AD交CE于點(diǎn)N,連接MN.試說(shuō)明:(1);(2)為等邊三角形.
【答案】(1)說(shuō)明見(jiàn)解析;(2)說(shuō)明見(jiàn)解析.
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)得出AC=BC.CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出∠1=∠2即可;(2) 由∠ACB=∠ECD=60°,根據(jù)平角的等于可求得∠ACE=60°,即可得∠ACB=∠ACE ,利用ASA判定△ACN≌△BCM,根據(jù)全等三角形的性質(zhì)可得NC=MC,所以△MCN是等腰三角形,又因∠ACE=60°,根據(jù)有一個(gè)角是60°的等腰三角形為等邊三角形,即可判定△MCN是等邊三角形.
試題解析:
(1)∵△ABC是等邊三角形,
∴BC=AC,∠ACB=60° ;
∵△ECD是等邊三角形,
∴EC=CD,∠ECD=60°,
∴∠ACB=∠ECD,
∴∠ACB+∠ACE=∠ECD +∠ACE,
即:∠BCE=∠DCA .
在△ACD和△BCE中,
AC=BC,∠DCA=∠DCE,EC=CD,
∴△ACD≌△BCE,
∴∠1=∠2.
(2)∵∠ACB=∠ECD=60°,
∴∠ACE=180°-∠ACB-∠ECD=180°-60°-60°=60°,
∴∠ACB=∠ACE .
在△ACN和△BCM中,
∠1=∠2,AC=BC,∠ACE=∠ACB,
∴△ACN≌△BCM(ASA),
∴NC=MC,
∴△MCN是等腰三角形,
又∵∠ACE=60°,
∴△MCN是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,動(dòng)點(diǎn)、分別以、的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動(dòng).
若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)隨點(diǎn)的停止而停止移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間、兩點(diǎn)之間的距離是?
若點(diǎn)沿著移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止時(shí),點(diǎn)隨點(diǎn)的停止而停止移動(dòng),試探求經(jīng)過(guò)多長(zhǎng)時(shí)間的面積為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,CD∥AB,點(diǎn)E是AC上一點(diǎn),且∠ABE=∠CAD,延長(zhǎng)BE交AD于點(diǎn)F.
(1)求證:△ABE≌△CAD;
(2)如果∠ABC=65°,∠ABE=25°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,
(1)求作⊙O,圓心O是AD的中垂線與AB的交點(diǎn),OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)
(2)求證:BC是⊙O切線.
(3)若BD=5,DC=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E;
(1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫出點(diǎn)A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點(diǎn)A在x軸上,且A(-4,0),點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點(diǎn)P,問(wèn)當(dāng)點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),BP的長(zhǎng)度是否變化?若變化請(qǐng)說(shuō)明理由,若不變化,請(qǐng)求出BP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C為AB中點(diǎn),CD=BE,CD∥BE.
(1)求證:△ACD≌△CBE;
(2)若∠D=35°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】( 1)計(jì)算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡(jiǎn),再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過(guò)點(diǎn)D作DE∥OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)D為AB中點(diǎn),延長(zhǎng)DE交x軸于點(diǎn)F,在ED的延長(zhǎng)線上取點(diǎn)G,使DG=DF,連接BG.
①BG與y軸的位置關(guān)系怎樣?說(shuō)明理由; ②求OF的長(zhǎng);
(3)如圖2,若點(diǎn)F的坐標(biāo)為(10,10),E是y軸的正半軸上一動(dòng)點(diǎn),P是直線AB上一點(diǎn),且P的橫坐標(biāo)為6,是否存在點(diǎn)E使△EFP為等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com