【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)的圖象交于點A43),與y軸的負半軸交于點B,連接OA,且OAOB

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)過點Pk,0)作平行于y軸的直線,交一次函數(shù)y2xn于點M,交反比例函數(shù)的圖象于點N,若NMNP,求n的值.

【答案】201y2x5, y=;(2n=-4n8

【解析】

1)由點A坐標知OA=OB=5,可得點B的坐標,由A點坐標可得反比例函數(shù)解析式,由A、B兩點坐標可得直線AB的解析式;
2)由k=2N2,6),根據(jù)NP=NM得點M坐標為(20)或(2,12),分別代入y=2x-n可得答案.

解:(1)∵點A的坐標為(4,3),
OA=5
OA=OB,
OB=5,
∵點By軸的負半軸上,
∴點B的坐標為(0-5),
將點A43)代入反比例函數(shù)解析式y=中,
∴反比例函數(shù)解析式為y=,
將點A4,3)、B0,-5)代入y=kx+b中,得:

k=2、b=-5,
∴一次函數(shù)解析式為y=2x-5
2)由(1)知k=2,
則點N的坐標為(26),
NP=NM,
∴點M坐標為(2,0)或(2,12),
分別代入y=2x-n可得:

n=-4n=8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名學(xué)生中選擇一人參加電腦知識競賽,在相同條件下對他們的電腦知識進行了10次測驗,成績?nèi)缦拢?單位:分)

甲成績

76

84

90

84

81

87

88

81

85

84

乙成績

82

86

87

90

79

81

93

90

74

78

(1)請完成下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

85分以上的頻率

84

84

14.4

0.3

84

84

34

(2)利用以上信息,請從三個不同的角度對甲、乙兩名同學(xué)的成績進行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有實數(shù)根.

1)求k的取值范圍;

2)若k為正整數(shù),且方程有兩個非零的整數(shù)根,求k的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學(xué)操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學(xué)將機器人運行時間設(shè)為t秒,機器人到點A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有(

A.①④B.①③C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中有不重合的兩個點Qx1y1)與Px2,y2),若Q、P為某個直角三角形的兩個銳角頂點,且該直角三角形的直角邊均與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”,記作DPQ,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”,例如在圖1中,點P11),點Q3,2),此時點Q與點P之間的“直距”DPQ3

1)①已知O為坐標原點,點A2,-1),B(-2,0),則DAO________,DBO________

②點C在直線y=-x3上,請你求出DCO的最小值.

2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線y2x4上一動點,請你直接寫出點E與點F之間“直距”DEF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為開發(fā)大西北,某工程隊承接高鐵修筑任務(wù),在山坡處需要修建隧道,為了測量隧道的長度,工程隊用無人機在距地面高度為500米的C處測得山坡南北兩端A、B的俯角分別為∠DCA=45°、∠DCB=30°(已知A、B、C三點在同一平面上),求隧道兩端A、B的距離.(參考數(shù)據(jù):≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為(  )

A. 12 B. 6 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10BD9,則△ADE的周長為(  )

A. 19B. 20C. 27D. 30

查看答案和解析>>

同步練習(xí)冊答案