【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時,點P的坐標為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的圓O經(jīng)過點D,E是⊙O上一點,且∠AED=45°.
(1)判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O半徑為6cm,AE=10cm,求∠ADE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(m<0)位于第二象限的圖像上的一個動點,過點A作AC⊥x
軸于點C;M為是線段AC的中點,過點M作AC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、
D兩點.順次連接A、B、C、D.設(shè)點A的橫坐標為n.
(1)求點B的坐標(用含有m、n的代數(shù)式表示);
(2)求證:四邊形ABCD是菱形;
(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時,求直線AB的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績的平均分數(shù)是82分,求x、y的值;
(2)在(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在AB上,△DAC、△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,則下列結(jié)論:①AE=DB;②CM=CN;③△CMN為等邊三角形;④MN//BC;
正確的有_________(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為20,求線段AC、AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):我們知道二次函數(shù)的圖象是拋物線,它也可以這樣定義:如果一個動點M(x,y)到定點A(0,m)(m>0)的距離與它到定直線y=﹣m的距離相等,那么動點M形成的圖形就是拋物線y=ax2(a>0)的圖象,如圖所示.
(1)探究:當(dāng)x≠0時,a與m有何數(shù)量關(guān)系?
(2)應(yīng)用:已知動點M(x,y)到定點A(0,4)的距離與到定直線y=﹣4的距離相等,請寫出動點M形成的拋物線的解析式.
(3)拓展:根據(jù)拋物線的平移變換,拋物線y= (x﹣1)2+2的圖象可以看作到定點A( , )的距離與它到定直線y=的距離相等的動點M(x,y)所形成的圖形.
(4)若點D的坐標是(1,8),在(2)中求得的拋物線上是否存在點P,使得PA+PD最短?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉(zhuǎn)90°后,點A的對應(yīng)點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△DEF中,DE=DF,點B在EF邊上,且∠EBD=60°,C是射線BD上的一個動點(不與點B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當(dāng)點C在線段BD上時,
①若點C與點D重合,請根據(jù)題意補全圖1,并直接寫出線段AE與BF的數(shù)量關(guān)系為________;
②如圖2,若點C不與點D重合,請證明AE=BF+CD;
(2)當(dāng)點C在線段BD的延長線上時,用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com