【題目】已知在平面直角坐標系xOy中,O是坐標原點,以P1,1)為圓心的⊙Px軸、y軸分別相切于點M和點N,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接PF,過點PPE⊥PFy軸于點E,設(shè)點F運動的時間是t秒(t0

1)若點Ey軸的負半軸上(如圖所示),求證:PE=PF;

2)在點F運動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;

3)作點F關(guān)于點M的對稱點F′,經(jīng)過MEF′三點的拋物線的對稱軸交x軸于點Q,連接QE.在點F運動過程中,是否存在某一時刻,使得以點Q、OE為頂點的三角形與以點P、MF為頂點的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】(1)、證明過程見解析;(2)b=2+ab=2a;(3)t=,t=t=2±

【解析】試題分析:(1)、連接PM、PN,根據(jù)切線的性質(zhì)得出PM=PN,根據(jù)就NPM=∠EPF=90°得出∠NPE=∠MPF,從而說明△PMF△PNE全等,從而說明PE=PF;(2)、根據(jù)t11t≤1兩種情況求出ab的關(guān)系;(3)、根據(jù)相似三角形的幾種不同的情況求出t的值.

試題解析:(1)、如圖,連接PM,PN,

∵⊙Px軸,y軸分別相切于點M和點N∴PM⊥MF,PN⊥ONPM=PN,

∴∠PMF=∠PNE=90°∠NPM=90°,∵PE⊥PF∠NPE=∠MPF=90°﹣∠MPE,

△PMF△PNE中,∠NPE=∠MPF PN=PM ∠PNE=∠PMF ,∴△PMF≌△PNEASA∴PE=PF,

(2)、解:t1時,點Ey軸的負半軸上,

由(1)得△PMF≌△PNE∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,

∴b﹣a=1+t﹣t﹣1=2,∴b=2+a

②0t≤1時,如圖2,點Ey軸的正半軸或原點上,

同理可證△PMF≌△PNE∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2a

(3)、t=,t=,t=2±

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知4x=3y,求代數(shù)式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程3x﹣2k=3的解是﹣1,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,外角∠DCG=∠A,點E、F分別是邊AD、BC上的兩點,且EF∥AB.∠D與∠1相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P是第二象限內(nèi)的點,且點P到x軸的距離是4,到y(tǒng)軸的距離是3,則點P的坐標是(
A.(﹣4,3)
B.(4,﹣3)
C.(﹣3,4)
D.(3,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的周長為36,對角線AC,BD相交于點O,點ECD的中點,BD=12,求△DOE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種型號計算器,A型號計算器的進貨價格為每臺30元,B型號計算器的進貨價格為每臺40元.商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)分別求商場銷售A,B兩種型號計算器每臺的銷售價格.
(2)商場準備用不多于2 500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?【利潤=銷售價格﹣進貨價格】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負整數(shù),b是最小的正整數(shù),c是絕對值最小的數(shù),則(acb___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:

以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______

查看答案和解析>>

同步練習(xí)冊答案