【題目】已知a是最大的負(fù)整數(shù),b是最小的正整數(shù),c是絕對(duì)值最小的數(shù),則(a+c)÷b=___________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場為迎接家電下鄉(xiāng)活動(dòng)銷售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,市場調(diào)研表明;當(dāng)銷售價(jià)定為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái),商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,每臺(tái)冰箱的定價(jià)應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸、y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),連接PF,過點(diǎn)P作PE⊥PF交y軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t>0)
(1)若點(diǎn)E在y軸的負(fù)半軸上(如圖所示),求證:PE=PF;
(2)在點(diǎn)F運(yùn)動(dòng)過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱點(diǎn)F′,經(jīng)過M、E和F′三點(diǎn)的拋物線的對(duì)稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三個(gè)實(shí)數(shù)a、b、c滿足a+b+c=0,a﹣b+c=0,則下列結(jié)論一定成立的是( )
A.a+b≥0B.a+c>0C.b+c≥0D.b2﹣4ac≥0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=x(m).
(1)若花園的面積為187m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是16m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是AB邊上一點(diǎn),BF=3AF,則下列四個(gè)結(jié)論:
①△AEF∽△DCE;
②CE平分∠DCF;
③點(diǎn)B、C、E、F四個(gè)點(diǎn)在同一個(gè)圓上;
④直線EF是△DCE的外接圓的切線;
其中,正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com