【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖②位置時(shí)(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)給予證明;
(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖③位置時(shí)(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
【答案】(1)、證明過程見解析;(2)、BD=DE–CE;證明過程見解析;(3)、BD=DE–CE;(4)、當(dāng)B,C在AE的同側(cè)時(shí),BD=DE–CE;當(dāng)B,C在AE的異側(cè)時(shí),BD=DE+CE.
【解析】
試題分析:(1)、根據(jù)垂直得出∠ADB=∠CEA=90°,結(jié)合∠BAC=90°得出∠ABD=∠CAE,從而證明出△ABD和△ACE全等,根據(jù)全等得出BD=AE,AD=EC,然后得出答案;(2)、根據(jù)第一題同樣的方法得出△ABD和△ACE全等,根據(jù)全等得出BD=AE,AD=EC,然后得出結(jié)論;(3)、根據(jù)同樣的方法得出結(jié)論;(4)、根據(jù)前面的結(jié)論得出答案.
試題解析:(1)∵BD⊥AE,CE⊥AE ∴∠ADB=∠CEA=90° ∴∠ABD+∠BAD=90° 又∵∠BAC=90°
∴∠EAC+∠BAD=90° ∴∠ABD=∠CAE
在△ABD與△ACE ∴△ABD≌△ACE ∴BD=AE,AD=EC ∴BD=DE+CE
(2)、∵BD⊥AE,CE⊥AE ∴∠ADB=∠CEA=90° ∴∠ABD+∠BAD=90°
又∵∠BAC=90°∴∠EAC+∠BAD=90° ∴∠ABD=∠CAE
在△ABD與△ACE ∴△ABD≌△ACE ∴BD=AE,AD=EC ∴BD=DE–CE
(3)、BD=DE–CE
(4)、歸納:由(1)(2)(3)可知:當(dāng)B,C在AE的同側(cè)時(shí),BD = DE –CE;當(dāng)B,C在AE的異側(cè)時(shí),∴BD=DE+CE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接BF與DE相交于點(diǎn)G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關(guān)系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠C=90,BD是ABC的一條角一平分線,點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形,
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長(zhǎng);
(3)求證:tan∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC<BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對(duì)角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說明理由.
(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)學(xué)生就“食品安全知識(shí)”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。
(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com