【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
【答案】(1)45°;(2)見(jiàn)解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°
②36或.
【解析】試題分析:(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;
(2)分當(dāng) B在PA的中垂線上,且P在右時(shí);B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時(shí);A在PB的中垂線上,且P在左時(shí)四中情況求解;
(3)①先說(shuō)明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長(zhǎng),然后利用割補(bǔ)法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.
(1)解:(1)連接BC,
∵AB是直徑,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,∴BE=EP,
即CD是PB的中垂線,
∴CP=CB= CA,
(3)① (Ⅰ)如圖2,當(dāng) B在PA的中垂線上,且P在右時(shí),∠ACD=15°;
(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;
(Ⅲ)如圖4,A在PB的中垂線上,且P在右時(shí)∠ACD=60°;
(Ⅳ)如圖5,A在PB的中垂線上,且P在左時(shí)∠ACD=120°
②(Ⅰ)如圖6, ,
.
(Ⅱ)如圖7, ,
,
.
,
.
,
,
,
.
設(shè)BD=9k,PD=2k,
,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車專賣店銷售,兩種型號(hào)的新能源汽車。上周售出1輛型車和3輛型車,銷售額為96萬(wàn)元,本周已售出2輛型車和1輛型車,銷售額為62萬(wàn)元。
(1)求每輛型車和型車的售價(jià)各為多少?
(2)隨著汽車限購(gòu)政策的推行,預(yù)計(jì)下周起,兩種型號(hào)的汽車價(jià)格在原有的基礎(chǔ)均有上漲,若型汽車價(jià)格上漲m%,型汽車價(jià)格上漲3m%,則同時(shí)購(gòu)買一臺(tái)型車和一臺(tái)型車的費(fèi)用比漲價(jià)前多12%,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接BF與DE相交于點(diǎn)G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關(guān)系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益”,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅(jiān)階段.某校擬整修學(xué)校食堂,現(xiàn)需購(gòu)買A、B兩種型號(hào)的防滑地磚共60塊,已知A型號(hào)地磚每塊80元,B型號(hào)地磚每塊40元.
(1)若采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么,最多能購(gòu)買A型號(hào)地磚多少塊?
(2)某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號(hào)的地磚單價(jià)都降低a%,這樣,該;ㄙM(fèi)了2560元就購(gòu)得所需地磚,其中A型號(hào)地磚a塊,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,求AH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx(k≠0)沿著y軸向上平移3個(gè)單位長(zhǎng)度后,與x軸交于點(diǎn)B(3,0),與y軸交于點(diǎn)C,拋物線y=x2+bx+c過(guò)點(diǎn)B、C且與x軸的另一個(gè)交點(diǎn)為A.
(1)求直線BC及該拋物線的表達(dá)式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)如果點(diǎn)F在y軸上,且∠CDF=45°,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC<BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com