【題目】如圖,在直角坐標(biāo)系中,等腰直角△ABOO點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),直角頂點(diǎn)B在第二象限,等腰直角△BCDC點(diǎn)在y軸上移動,我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨之在一條直線上移動,這條直線的解析式是(  )

A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2

【答案】D

【解析】

抓住兩個特殊位置當(dāng)BCx軸平行時,求出D的坐標(biāo)C與原點(diǎn)重合時,Dy軸上求出此時D的坐標(biāo),設(shè)所求直線解析式為y=kx+b,將兩位置D坐標(biāo)代入得到關(guān)于kb的方程組,求出方程組的解得到kb的值,即可確定出所求直線解析式

當(dāng)BCx軸平行時,BBExDDFx,BC于點(diǎn)G,如圖1所示

∵等腰直角△ABOO點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),AO=4,BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1DF=DG+GF=3,D坐標(biāo)為(﹣13);

當(dāng)C與原點(diǎn)O重合時Dy軸上,此時OD=BE=2D0,2),設(shè)所求直線解析式為y=kx+bk0),將兩點(diǎn)坐標(biāo)代入得,解得

則這條直線解析式為y=﹣x+2

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,BC6cm,AC8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′處,那么CD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項(xiàng)的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結(jié)分析報告》中稱:山西春節(jié)旅游供需兩旺,實(shí)現(xiàn)了“旅游接待”與“經(jīng)濟(jì)效益”的雙豐收,請根據(jù)圖表信息解決問題:

(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關(guān),達(dá)到   萬人次,比2017年春節(jié)假日增加   萬人次.

(2)2018年2月15日﹣20日期間,山西省35個重點(diǎn)景區(qū)每日接待游客數(shù)量如下:

日期

2月15日

(除夕)

2月16日

(初一)

2月17日

(初二)

2月18日(初三)

2月19日

(初四)

2月20日

(初五)

日接待游客數(shù)量(萬人次)

7.56

82.83

119.51

84.38

103.2

151.55

這組數(shù)據(jù)的中位數(shù)是   萬人次.

(3)根據(jù)圖2中的信息預(yù)估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為   ,理由是   

(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術(shù)”、“國粹京劇”、“陶瓷藝術(shù)”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機(jī)挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】具備下列條件的三角形中,不是直角三角形的是(

A. ∠A+∠B=∠C B. ∠B=∠C=∠A

C. ∠A=90°-∠B D. ∠A-∠B=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點(diǎn)P,作PEACE,QBC延長線上一點(diǎn),當(dāng)PACQ時,連PQAC邊于D,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)MN是∠ABC與∠ACB三等分線的交點(diǎn),連接MN

1)求證:MN平分∠BMC

2)若∠A60°,求∠BMN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點(diǎn).

(1)求證:四邊形DEBF是菱形;

(2)若BE=4,∠DEB=120°,點(diǎn)MBF的中點(diǎn),當(dāng)點(diǎn)PBD邊上運(yùn)動時,則PF+PM的最小值為   ,并在圖上標(biāo)出此時點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;a﹣b+c>1;abc>0;4a﹣2b+c<0;c﹣a>1.其中所有正確結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD是它的一條對角線,過A、C兩點(diǎn)作AEBD,CFBD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。

(1求證:四邊形CMAN是平行四邊形。

(2已知DE=4,F(xiàn)N=3,求BN的長。

查看答案和解析>>

同步練習(xí)冊答案