【題目】如圖,正方形ABCD的邊長為a,E.F分別是邊AD、BC的中點,點G在CD上.且,DF、EG相交于點H.
(1)求出的值;
(2)求證:EG⊥DF;
(3)過點H作MN∥CD,分別交AD、BC于點M、N,點P是MN上一點,當(dāng)點P在什么位置時,△PDC的周長最小,并求△PDC周長的最小值.
【答案】(1) ;(2)見解析;(3)見解析,△PDC周長的最小值= .
【解析】
(1)根據(jù)題意求出DE、DG,根據(jù)勾股定理求出EG,計算即可;
(2)證明△EDG∽△DCF,根據(jù)相似三角形的性質(zhì)得到∠DEG=∠CDF,根據(jù)垂直的定義證明結(jié)論;
(3)作點C關(guān)于NM的對稱點K,連接DK交MN于點P,連接PC,得到△PDC周長的最小值=CD+DK,根據(jù)勾股定理、三角形的面積公式計算即可.
(1)解:∵E是邊AD的中點,=,正方形ABCD的邊長為a,
∴DE=AD=a,DG=DC=a,
由勾股定理得,EG= =a,
∴==;
(2)證明:=,=,
∴=,又∠EDG=∠DCF,
∴△EDG∽△DCF,
∴∠DEG=∠CDF,
∵∠EDG=90°,
∴∠DEG+∠DGE=90°,
∴∠GDH+∠DGE=90°,即∠DHG=90°,
∴EG⊥DF;
(3)解:作點C關(guān)于NM的對稱點K,連接DK交MN于點P,連接PC,此時△PDC的周長最短.周長的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
由題意:CD=AD=a,
由(1)可知,ED=AE=a,DG=a,EG=a,
△DEG的面積=×EG×DH=×DG×DE,
DH==a,
∴EH==a,
∴HM= =a,
∴DM=CN=NK==a,
∴DK= =a,
則△PDC周長的最小值=CD+DK= a.
故答案為:(1) ;(2)見解析;(3)見解析,△PDC周長的最小值= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四個結(jié)論中:正確的個數(shù)有( 。
①如果方程M有兩個相等的實數(shù)根,那么方程N也有兩個相等的實數(shù)根;
②如果ac<0,方程M、N都有兩個不相等的實數(shù)根;
③如果2是方程M的一個根,那么是方程N的一個根;
④如果方程M和方程N有一個相同的根,那么這個根必是x=1.
A.4個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學(xué)問題,如圖2.已知鐵環(huán)的半徑為25 cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=.
(1)求點M離地面AC的高度BM;
(2)設(shè)人站立點C與點A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山坡上一棵樹PQ的高度,小明在點A處利用測角儀測得樹頂P的仰角為450 ,然后他沿著正對樹PQ的方向前進10m到達B點處,此時測得樹頂P和樹底Q的仰角分別是600和300,設(shè)PQ垂直于AB,且垂足為C.
(1)求∠BPQ的度數(shù);
(2)求樹PQ的高度(結(jié)果精確到0.1m, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+n=n(n+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+(2n﹣1)=n2.
那么13+23+33+…+n3結(jié)果等于多少呢?
如圖③,AB是正方形ABCD的一邊,BB′=n,B′B″=n﹣1,B″B′′′=n﹣2,……,顯然AB=1+2+3+…+n= n(n+1),分別以AB′、AB″、AB′′′、…為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn﹣1、Sn﹣2、…、S1.
(規(guī)律探究)
結(jié)合圖形,可以得到Sn=2BB′×BC﹣BB′2= ,
同理有Sn﹣1= ,Sn﹣2= ,…,S1=13.
所以13+23+33+…+n3=S四邊形ABCD= .
(解決問題)
根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿中,以為直徑的⊙與邊交于點,點為⊙上一點,連接并延長交于點 ,連接 .
(1)若 ;求證:是⊙的切線;
(2)若 .求⊙的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算能力是數(shù)學(xué)的基本能力,為了進一步了解學(xué)生的計算情況,初2020級數(shù)學(xué)老師們對某次考試中第19題計算題的得分情況進行了調(diào)查,現(xiàn)分別從A、B兩班隨機各抽取10名學(xué)生的成績?nèi)缦拢?/span>
A班10名學(xué)生的成績繪成了條形統(tǒng)計圖,如下圖,
B班10名學(xué)生的成績(單位:分)分別為:9,8,9,10,9,7,9,8,10,8
經(jīng)過老師對所抽取學(xué)生成績的整理與分析,得到了如下表數(shù)據(jù):
A班 | B班 | |
平均數(shù) | 8.3 | a |
中位數(shù) | b | 9 |
眾數(shù) | 8或10 | c |
極差 | 4 | 3 |
方差 | 1.81 | 0.81 |
根據(jù)以上信息,解答下列問題.
(1)補全條形統(tǒng)計圖;
(2)直接寫出表中a,b,c的值:a= ,b= ,c= ;
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為A、B兩個班哪個班計算題掌握得更好?請說明理由(寫出其中兩條即可): .
(4)若9分及9分以上為優(yōu)秀,若A班共55人,則A班計算題優(yōu)秀的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家銷售一種產(chǎn)品,現(xiàn)準(zhǔn)備從網(wǎng)上銷售和市場直銷兩種銷售方案中選擇一種進行銷售.由于受各種不確定因素影響,不同銷售的方案會產(chǎn)生不同的成本和其它費用.設(shè)每月銷售x件,網(wǎng)上銷售月利潤為w網(wǎng)(元),市場直銷月利潤為w市(元),具體信息如表:
每件售價(元) | 每件成本(元) | 月其他費用(元) | |
網(wǎng)上銷售 | -x+120 | 20 | 45000 |
市場直銷 | 120 | k |
其中k為常數(shù),且30≤k≤50.月利潤=月銷售額-月成本-月其它費用.
(1)當(dāng)x=500時,網(wǎng)上銷售單價為______元.
(2)分別求出w網(wǎng),w市與x間的函數(shù)解析式(不必寫x的取值范圍).
(3)若網(wǎng)上銷售月利潤的最大值與市場直銷月利潤的最大值相同,求k的值.
(4)如果某月要將3000件產(chǎn)品全部銷售完,請你通過分析幫廠家做出決策,選擇在網(wǎng)上銷售還是市場直銷才能使月利潤較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,矩形ABCD中,AB=2cm,AD=3cm.點P和點Q同時從點A出發(fā),點P以3cm/s的速度沿A→D方向運動到點D為止,點Q以2cm/s的速度沿A→B→C→D方向運動到點D為止,則△APQ的面積S(cm2)與運動時間t(s)之間函數(shù)關(guān)系的大致圖象是( 。
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com