【題目】在平行四邊形、等腰梯形、等腰三角形、矩形、菱形五個圖形中,既是中心對稱圖形又是軸對稱圖形的有(
A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:矩形、菱形是軸對稱圖形,也是中心對稱圖形,符合題意; 等腰三角形、等腰梯形是軸對稱圖形,不是中心對稱圖形,不符合題意;
平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.
故既是軸對稱圖形又是中心對稱圖形的是:矩形、菱形.
故選:B.
根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合幾何圖形的特點進行判斷.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四名運動員參加4×100米接力賽,甲必須為第一接力棒或第四接力棒的運動員,那么這四名運動員在比賽過程的接棒順序有( 。

A. 3 B. 4 C. 6 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1A3B3C3C2,按如圖的方式放置.點A1,A2A3,和點C1C2,C3,分別在直線y=x+1x軸上,則點B6的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)信息豐富了人類生活的新空間. 據(jù)統(tǒng)計,目前我國約有670 000 000網(wǎng)民,將670 000 000用科學記數(shù)法表示為(   )

A. 6.7×109 B. 6.7×108 C. 6.7×107 D. 0.67×108

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為1,以為圓心、為半徑作扇形OA1C1弧A1C1相交于點,設正方形與扇形之間的陰影部分的面積為;然后以為對角線作正方形,又以為圓心,、為半徑作扇形,弧A2C2相交于點,設正方形與扇形之間的陰影部分面積為;按此規(guī)律繼續(xù)作下去,設正方形與扇形之間的陰影部分面積為

(1)求

(2)寫出;

(3)試猜想(用含的代數(shù)式表示,為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(3分)小明將一根木條固定在墻上只用了兩個釘子,他這樣做的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD繞點A逆時針旋轉(zhuǎn)no后得到正方形AEFG ,邊EF與CD交于點O.

1)以圖中已標有字母的點為端點連結(jié)兩條線段(正方形的對角線除外),要求所連結(jié)的兩條線段相交且互相垂直,并說明這兩條線段互相垂直的理由;

2)若正方形的邊長為2cm,重疊部分(四邊形AEOD)的面積為cm2,求旋轉(zhuǎn)的角度n.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸相交于AB兩點,并與直線交于B,C兩點,其中點C是直線與y軸的交點,連接AC.

(1)求拋物線的解析式;

(2)證明:△ABC為直角三角形;

(3)△ABC內(nèi)部能否截出面積最大的矩形DEFG?(頂點D、E、F、G在△ABC各邊上)若能,求出最大面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】馬拉松賽選手分甲、乙兩組運動員進行了艱苦的訓練,他們在相同條件下各10次比賽,成績的平均數(shù)相同,方差分別為0.25,0.21,則成績較為穩(wěn)定的是_________(選填乙)

查看答案和解析>>

同步練習冊答案