【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,其中圖3個(gè)小菱形,圖7個(gè)小菱形,圖13個(gè)小菱形……請(qǐng)根據(jù)排列規(guī)律完成下列問(wèn)題:

1)請(qǐng)寫出圖中小菱形的個(gè)數(shù);

2)根據(jù)表中規(guī)律猜想,圖中小菱形的個(gè)數(shù)的關(guān)系式(不用說(shuō)理);

3)是否存在一個(gè)圖形恰好由91個(gè)菱形組成?若存在,求出圖形的序號(hào);若不存在,說(shuō)明理由.

【答案】(1)31;(2)為正整數(shù));(3)存在;該圖形的序號(hào)為⑨.

【解析】

1)根據(jù)前四個(gè)圖形即可得到答案;(2)依次列出前3個(gè)圖形中小菱形的個(gè)數(shù)的關(guān)系式,即可得到圖中小菱形的個(gè)數(shù);(3)將y=91代入(2)中的式子即可求得結(jié)果.

解:(1)圖⑤中小菱形的個(gè)數(shù)是31.

(2)圖①中小菱形的個(gè)數(shù): ,

圖②中小菱形的個(gè)數(shù):

圖③中小菱形的個(gè)數(shù): ,

中小菱形的個(gè)數(shù)= ,

為正整數(shù))

(3)依題意,得,

解得:(舍去),,

∴存在一個(gè)圖形恰好由91個(gè)菱形組成,該圖形的序號(hào)為⑨.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)為腰中點(diǎn),點(diǎn)在底邊上,且,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接,過(guò)點(diǎn)軸的垂線.

1)求點(diǎn)的坐標(biāo);

2)直線上是否存在點(diǎn),使的面積等于的面積的3倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于AB兩點(diǎn)(AB左邊),與軸交于C點(diǎn),頂點(diǎn)為P,OC=2AO.

(1)滿足的關(guān)系式;

(2)直線AD//BC,與拋物線交于另一點(diǎn)D,△ADP的面積為,求的值;

(3)(2)的條件下,過(guò)(1,-1)的直線與拋物線交于M、N兩點(diǎn),分別過(guò)MN且與拋物線僅有一個(gè)公共點(diǎn)的兩條直線交于點(diǎn)G,求OG長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

(1)用配方法化成頂點(diǎn)式;

(2)求出頂點(diǎn)坐標(biāo)、對(duì)稱軸、最小值;

(3)求出拋物線與x軸、y軸交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y過(guò)ABCD的頂點(diǎn)B,D.點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)Ay軸上,且ADx軸,SABCD6

1)填空:點(diǎn)A的坐標(biāo)為   ;

2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,,聯(lián)結(jié)于點(diǎn)

1)求的周長(zhǎng)比;

2)如果,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交與A(1,0),B(- 3,0)兩點(diǎn)

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線過(guò),兩點(diǎn).

備用圖

1)求該拋物線的解析式;

2)點(diǎn)P是拋物線上一點(diǎn),且位于第一象限,當(dāng)的面積為3時(shí),求出點(diǎn)P的坐標(biāo);

3)過(guò)BC,連接OB,點(diǎn)G是拋物線上一點(diǎn),當(dāng)時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)G的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案