【題目】已知拋物線軸交于A,B兩點(diǎn)(AB左邊),與軸交于C點(diǎn),頂點(diǎn)為POC=2AO.

(1)滿足的關(guān)系式;

(2)直線AD//BC,與拋物線交于另一點(diǎn)D,△ADP的面積為,求的值;

(3)(2)的條件下,過(guò)(1-1)的直線與拋物線交于MN兩點(diǎn),分別過(guò)M、N且與拋物線僅有一個(gè)公共點(diǎn)的兩條直線交于點(diǎn)G,求OG長(zhǎng)的最小值.

【答案】1;(2;(3.

【解析】

1)將拋物線解析式進(jìn)行因式分解,可求出A點(diǎn)坐標(biāo),得到OA長(zhǎng)度,再由C點(diǎn)坐標(biāo)得到OC長(zhǎng)度,然后利用OC=2AO建立等量關(guān)系即可得到關(guān)系式;

2)利用待定系數(shù)法求出直線BCk,根據(jù)平行可知AD直線的斜率kBC相等,可求出直線AD解析式,與拋物線聯(lián)立可求D點(diǎn)坐標(biāo),過(guò)PPEx軸交AD于點(diǎn)E,求出PE即可表示△ADP的面積,從而建立方程求解;

3)為方便書寫,可設(shè)拋物線解析式為:,設(shè),,過(guò)點(diǎn)M的切線解析式為,兩拋物線與切線聯(lián)立,由可求k,得到M、N的坐標(biāo)滿足,將(1,-1)代入,推出G為直線上的一點(diǎn),由垂線段最短,求出OG垂直于直線時(shí)的值即為最小值.

解:(1

y=0,,解得,

x=0,則

, AB左邊

A點(diǎn)坐標(biāo)為(-m,0),B點(diǎn)坐標(biāo)為(4m0),C點(diǎn)坐標(biāo)為(0,-4am2

AO=m,OC=4am2

OC=2AO

4am2=2m

2)∵

C點(diǎn)坐標(biāo)為(0,-2m

設(shè)BC直線為,代入B4m,0),C0,-2m)得

,解得

ADBC,

∴設(shè)直線AD,代入A-m0)得,,

∴直線AD

直線AD與拋物線聯(lián)立得,

,解得

D點(diǎn)坐標(biāo)為(5m,3m

又∵

∴頂點(diǎn)P坐標(biāo)為

如圖,過(guò)PPEx軸交AD于點(diǎn)E,則E點(diǎn)橫坐標(biāo)為,代入直線AD

PE=

SADP=

解得

m0

.

3)在(2)的條件下,可設(shè)拋物線解析式為:

設(shè),,過(guò)點(diǎn)M的切線解析式為,

將拋物線與切線解析式聯(lián)立得:

,整理得,

,

∴方程可整理為

∵只有一個(gè)交點(diǎn),

整理得

解得

∴過(guò)M的切線為

同理可得過(guò)N的切線為

由此可知M、N的坐標(biāo)滿足

代入整理得

將(1,-1)代入得

在(2)的條件下,拋物線解析式為,即

整理得

G點(diǎn)坐標(biāo)滿足,即G為直線上的一點(diǎn),

當(dāng)OG垂直于直線時(shí),OG最小,如圖所示,

直線x軸交點(diǎn)H5,0),與y軸交點(diǎn)F0,

OH=5,OF=FH=

OG的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線經(jīng)過(guò)B、C兩點(diǎn).

1)求拋物線的解析式;

2)如圖,點(diǎn)E是拋物線上的一動(dòng)點(diǎn)(不與BC兩點(diǎn)重合),△BEC面積記為SS取何值時(shí),對(duì)應(yīng)的點(diǎn)E有且只有兩個(gè)?

3)直線x=2交直線BC于點(diǎn)M,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)AB的坐標(biāo)分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個(gè)交點(diǎn),則a的取值范圍是_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一房間內(nèi)A、B兩點(diǎn)之間設(shè)有探測(cè)報(bào)警裝置,小車(不計(jì)大。┰诜块g內(nèi)運(yùn)動(dòng),當(dāng)小車從AB之間經(jīng)過(guò)時(shí),將觸發(fā)報(bào)警.現(xiàn)將A、B兩點(diǎn)放置于平面直角坐標(biāo)系xOy中(如圖),已知點(diǎn)A,B的坐標(biāo)分別為(0,4),(4,4),小車沿拋物線yax22ax3aa0)運(yùn)動(dòng).若小車在運(yùn)動(dòng)過(guò)程中只觸發(fā)一次報(bào)警裝置,則a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)B的坐標(biāo)為(﹣2,﹣4),拋物線yax2+bx的對(duì)稱軸為x=﹣5,該拋物線經(jīng)過(guò)點(diǎn)A、B,點(diǎn)EAB與對(duì)稱軸x=﹣5的交點(diǎn).

1)如圖1,點(diǎn)P為直線AB下方的拋物線上的任意一點(diǎn),在對(duì)稱軸x=﹣5上有一動(dòng)點(diǎn)M,當(dāng)△ABP的面積最大時(shí),求|PMOM|的最大值以及點(diǎn)P的坐標(biāo).

2)如圖2,把△ABO沿射線BA方向平移,得到△CDF,其中點(diǎn)C、D、F分別是點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn),且點(diǎn)F與點(diǎn)O不重合,平移過(guò)程中,是否存在這樣的點(diǎn)F,使得以點(diǎn)A、E、F為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列一元二次方程兩實(shí)數(shù)根和為﹣4的是( )

A. x2+2x﹣4=0 B. x2﹣4x+4=0 C. x2+4x+10=0 D. x2+4x﹣5=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,其中圖3個(gè)小菱形,圖7個(gè)小菱形,圖13個(gè)小菱形……請(qǐng)根據(jù)排列規(guī)律完成下列問(wèn)題:

1)請(qǐng)寫出圖中小菱形的個(gè)數(shù);

2)根據(jù)表中規(guī)律猜想,圖中小菱形的個(gè)數(shù)的關(guān)系式(不用說(shuō)理);

3)是否存在一個(gè)圖形恰好由91個(gè)菱形組成?若存在,求出圖形的序號(hào);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D在AB邊上,DEBC,與邊AC交于點(diǎn)E,連結(jié)BE.記△ADE,△BCE的面積分別為S1,S2,( 。

A. 若2ADAB,則3S1>2S2 B. 若2ADAB,則3S1<2S2

C. 若2ADAB,則3S1>2S2 D. 若2ADAB,則3S1<2S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y的圖象在第二象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)AABx軸于點(diǎn)BOB2

1)求該反比例函數(shù)的表達(dá)式;

2)若點(diǎn)P是該反比例函數(shù)圖象上一點(diǎn),且PAB的面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案