【題目】如圖,為的直徑,為上一點(diǎn),,延長至點(diǎn),使得,過點(diǎn)作,垂足在的延長線上,連接.
(1)求證:是的切線;
(2)當(dāng)時(shí),求圖中陰影部分的面積.
【答案】(1)詳見解析;(2).
【解析】
(1)連接OB,欲證是的切線,即要證到∠OBE=90°,而根據(jù)等腰三角形的性質(zhì)可得到.再根據(jù)直角三角形的性質(zhì)可得到,從而得到,從而得到,然后根據(jù)切線的判定方法得出結(jié)論即可.
(2)先根據(jù)已知條件求出圓的半徑,再根據(jù)扇形的面積計(jì)算公式計(jì)算出扇形OBC的面積,再算出三角形OBC的面積,則陰影部分的面積可求.
(1)證明:如圖,連接
∵,,
∴.
∵,,
∴在中,.
∴
∴在中,.
∴,即.
又∵為圓上一點(diǎn),
∴是圓的切線.
(2)解:當(dāng)時(shí),.
∵為圓的直徑,
∴.
又∵,
∴.
在中,,即,
解得.
∴,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動(dòng),凡購物者可以通過轉(zhuǎn)動(dòng)轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲,指針指向A區(qū)域時(shí),所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個(gè)轉(zhuǎn)盤的指針指向每個(gè)區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個(gè)轉(zhuǎn)盤中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;
(2)若顧客選擇方式二,請(qǐng)用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣+bx+c經(jīng)過A,B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線上,點(diǎn)Q在直線AB上,當(dāng)P,Q關(guān)于原點(diǎn)O成中心對(duì)稱時(shí),求點(diǎn)Q的坐標(biāo);
(3)點(diǎn)M為直線AB上的動(dòng)點(diǎn),點(diǎn)N為拋物線上的動(dòng)點(diǎn),當(dāng)以點(diǎn)O、B、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、E、F,得△DEF,則下列說法正確的個(gè)數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB=5,AB=6,AB⊥y軸,垂足為A.反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,交AB于點(diǎn)D.
(1)若OA=8,求k的值;
(2)若CB=BD,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組在測量某市建筑物CD的高度時(shí),他們?cè)?/span>A處測得建筑物頂部D處的仰角為49°,然后他們往CA方向后退了3.4米到達(dá)B處(C,A,B在一條直線上),測得建筑物頂部D的仰角恰好為45°,請(qǐng)用他們測量的數(shù)據(jù)求出建筑物CD的高度.(結(jié)果精確到0.1m,參考數(shù)據(jù)sin49°≈0.75,cos49°≈0.66,tan49°≈1.15).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線(x>0)經(jīng)過點(diǎn)A(1,6)、點(diǎn)B(2,n),點(diǎn)P的坐標(biāo)為(t,0),且-1≤t<3,則△PAB的最大面積為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是AB延長線上的一點(diǎn),點(diǎn)D在⊙O上且AD=CD,∠C=30°.
(1)求證:CD是⊙O的切線,
(2)若⊙O的半徑為5,求 的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com