如圖,拋物線y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于點(diǎn)A(1,3)過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C,則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=
2
3
;③當(dāng)x=0時(shí),y2-y1=4;④2AB=3AC;
其中,結(jié)論正確的是______(填寫序號(hào)即可)
①∵拋物線y2=
1
2
(x-3)2+1開口向上,頂點(diǎn)坐標(biāo)在x軸的上方,
∴無論x取何值,y2的值總是正數(shù),故本選項(xiàng)正確;

②把A(1,3)代入,拋物線y1=a(x+2)2-3得,3=a(1+2)2-3,
解得a=
2
3
,故本選項(xiàng)正確;

③由兩函數(shù)圖象可知,拋物線y1=a(x+2)2-3
解析式為y1=
2
3
(x+2)2-3,
當(dāng)x=0時(shí),y1=
2
3
(0+2)2-3=-
1
3
,y2=
1
2
(0-3)2+1=
11
2

故y2-y1=-
1
3
-
11
2
=-
35
6
,故本選項(xiàng)錯(cuò)誤;

④∵物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點(diǎn)A(1,3),
∴y1的對(duì)稱軸為x=-2,y2的對(duì)稱軸為x=3,
∴B(-5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本選項(xiàng)題正確.
故答案為①②④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸負(fù)半軸,點(diǎn)B在x軸正半軸,與y軸交于點(diǎn)C,且tan∠ACO=
1
2
,CO=BO,AB=3,求這條拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-(m-2)x+m的圖象經(jīng)過(-1,15),
(1)求m的值;
(2)設(shè)此二次函數(shù)的圖象與x軸的交點(diǎn)為A、B,圖象上的點(diǎn)C使△ABC的面積等于1,求C點(diǎn)的坐標(biāo);
(3)當(dāng)△ABC的面積大于3時(shí),求點(diǎn)C橫坐標(biāo)的取值范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(1,0)、B(3,0)、C(0,3).
(1)試求出拋物線的解析式;
(2)問:在拋物線的對(duì)稱軸上是否存在一個(gè)點(diǎn)Q,使得△QAC的周長(zhǎng)最小,試求出△QAC的周長(zhǎng)的最小值,并求出點(diǎn)Q的坐標(biāo);
(3)現(xiàn)有一個(gè)動(dòng)點(diǎn)P從拋物線的頂點(diǎn)T出發(fā),在對(duì)稱軸上以1個(gè)單位長(zhǎng)度每秒的速度向y軸的正方向運(yùn)動(dòng),試問,經(jīng)過幾秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y1=ax2+bx+c(a≠0)和y2=mx+n的圖象交于(-2,-5)點(diǎn)和(1,4)點(diǎn),并且y1=ax2+bx+c的圖象與y軸交于點(diǎn)(0,3).
(1)求函數(shù)y1和y2的解析式,并畫出函數(shù)示意圖;
(2)x為何值時(shí),①y1>y2;②y1=y2;③y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)以每個(gè)40元的進(jìn)價(jià)購(gòu)進(jìn)一批籃球,如果以每個(gè)50元銷售,那么每月可售出200個(gè).根據(jù)銷售經(jīng)驗(yàn),售價(jià)每提高1元,銷售量相應(yīng)減少10個(gè).
(1)假設(shè)銷售單價(jià)提高x元,那么銷售1個(gè)籃球所獲得的利潤(rùn)是______元;這種籃球每月的銷售量是______個(gè);(用含x的代數(shù)式表示)
(2)籃球的售價(jià)定為多少元時(shí),每月銷售這種籃球的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購(gòu)進(jìn)一批單價(jià)為20元的日用商品,如果以單價(jià)30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗(yàn),推廣銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高1元,銷售量相應(yīng)減少20件.
(1)銷售單價(jià)提高多少元,可獲利4480元.
(2)如何提高售價(jià),才能在半月內(nèi)獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-2mx+m2-4的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),且與y軸交于點(diǎn)D.
(1)當(dāng)點(diǎn)D在y軸正半軸時(shí),是否存在實(shí)數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請(qǐng)說明理由;
(2)當(dāng)m=-1時(shí),將函數(shù)y=x2-2mx+m2-4的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象Ω.當(dāng)直線y=
1
2
x+b
與圖象Ω有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平行四邊形ABCD中,過點(diǎn)C作CE⊥CD交AD于點(diǎn)E,將線段EC繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EF(如圖1)
(1)在圖1中畫圖探究:
①當(dāng)P1為射線CD上任意一點(diǎn)(P1不與C重合)時(shí),連接EP1;繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系,并加以證明;
②當(dāng)P2為線段DC的延長(zhǎng)線上任意一點(diǎn)時(shí),連接EP2,將線段EP2繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.
(2)若AD=6,tanB=
4
3
,AE=1,在①的條件下,設(shè)CP1=x,S△P1FG1=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案