已知函數(shù)y1=ax2+bx+c(a≠0)和y2=mx+n的圖象交于(-2,-5)點(diǎn)和(1,4)點(diǎn),并且y1=ax2+bx+c的圖象與y軸交于點(diǎn)(0,3).
(1)求函數(shù)y1和y2的解析式,并畫出函數(shù)示意圖;
(2)x為何值時,①y1>y2;②y1=y2;③y1<y2
(1)把(-2,-5)、(1,4)、(0,3)代入y1=ax2+bx+c(a≠0)得
4a-2b+c=-5
a+b+c=4
c=3
,
解得
a=-1
b=2
c=3
,
所以y1=-x2+2x+3,
把(-2,-5)、(1,4)代入y2=mx+n得
-2m+n=-5
m+n=4
,
解得
m=3
n=1
,
所以y2=3x+1;如圖

(2)①當(dāng)-2<x<1時,y1>y2
②當(dāng)x=-2或x=1時,y1=y2
③當(dāng)x<-2或x>1時y1<y2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,A、B兩點(diǎn)的坐標(biāo)分別為A(-6,0)、B(2,0).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在拋物線的對稱軸上存在一點(diǎn)P,使得PB+PC的值最小,請求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個動點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在學(xué)校田徑運(yùn)動會上,九年級的一名高個子男生拋實(shí)心球,已知實(shí)心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男生的拋球處A點(diǎn)坐標(biāo)為(0,2),實(shí)心球在空中線路的最高點(diǎn)B點(diǎn)的坐標(biāo)是(6,5).
(1)求這個二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠(yuǎn)為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計(jì)算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AD的對稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向作勻速運(yùn)動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時,過點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于點(diǎn)A(1,3)過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C,則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=
2
3
;③當(dāng)x=0時,y2-y1=4;④2AB=3AC;
其中,結(jié)論正確的是______(填寫序號即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某建筑物有一拋物線形的大門,小強(qiáng)想知道這道門的高度.他先測出門的寬度AB=8m,然后用一根長為4m的小竹竿CD豎直地接觸地面和門的內(nèi)壁,并測得AC=1m.小強(qiáng)畫出了如圖的草圖,請你幫他算一算門的高度OE(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市有一種可食用的野生菌,上市時,某經(jīng)銷公司按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格y(元)與存放天數(shù)x(天)之間的部分對應(yīng)值如下表所示:
存放天數(shù)x(天)246810
市場價格y(元)3234363840
但冷凍存放這批野生菌時每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價格收購這種野生1180千克,存放入冷庫中一段時間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請你確定此時市場的最低價格應(yīng)為多少元?(結(jié)果精確到個位,參考數(shù)據(jù):
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.
(1)以隧道橫斷面拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對稱軸為y軸,建立直角坐標(biāo)系,求該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)某卡車空車時能通過此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過隧道?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過B(8、0),C(6、2
3
)兩點(diǎn),點(diǎn)A是點(diǎn)C關(guān)于拋物線y=ax2+bx的對稱軸的對稱點(diǎn),連接OA、AC、BC

(1)求拋物線的解析式.
(2)動點(diǎn)E從點(diǎn)O出發(fā),速度為3個單位/秒,沿O→A→C勻速運(yùn)動:動點(diǎn)F從點(diǎn)O出發(fā),速度為4個單位/秒,沿O→B勻速運(yùn)動,動點(diǎn)E、F同時出發(fā),若設(shè)運(yùn)動時間為t秒(0≤t≤2),△OEF的面積為S,請求出運(yùn)動過程中S與t的關(guān)系式.
(3)設(shè)P是拋物線對稱軸上的一點(diǎn),是否存在點(diǎn)P使以O(shè)、E、F、P為頂點(diǎn)的四邊形是平行四邊形?若不存在,請說明理由;若存在,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案