【題目】如圖,OC平分∠MON,A、B分別為OM、ON上的點(diǎn),且BO>AO,AC=BC,求證:∠OAC+∠OBC=180°.
【答案】見解析.
【解析】
如圖,作CE⊥ON于E,CF⊥OM于F.由Rt△CFA≌Rt△CEB,推出∠ACF=∠ECB,推出∠ACB=∠ECF,由∠ECF+∠MON=360°﹣90°﹣90°=180°,可得∠ACB+∠AOB=180°,推出∠OAC+∠OBC=180°.
如圖,作CE⊥ON于E,CF⊥OM于F.
∵OC平分∠MON,CE⊥ON于E,CF⊥OM于F.
∴CE=CF,
∵AC=BC,∠CEB=∠CFA=90°,
∴Rt△CFA≌Rt△CEB(HL),
∴∠ACF=∠ECB,
∴∠ACB=∠ECF,
∵∠ECF+∠MON=360°﹣90°﹣90°=180°,
∴∠ACB+∠AOB=180°,
∴∠OAC+∠OBC=180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)A,B兩城相距 千米,乙車比甲車早到 小時(shí);
(2)甲車出發(fā)多長時(shí)間與乙車相遇?
(3)若兩車相距不超過20千米時(shí)可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時(shí)間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊華與季紅用5張同樣規(guī)格的硬紙片做拼圖游戲,正面如圖1所示,背面完全一樣,將它們背面朝上攪勻后,同時(shí)抽出兩張.規(guī)則如下:當(dāng)兩張硬紙片上的圖形可拼成電燈或小人時(shí),楊華得1分;當(dāng)兩張硬紙片上的圖形可拼成房子或小山時(shí),季紅得1分(如圖2).問題:游戲規(guī)則對雙方公平嗎?請說明理由;若你認(rèn)為不公平,如何修改游戲規(guī)則才能使游戲?qū)﹄p方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為(2,0),將拋物線C1向右平移m(m>0)個(gè)單位得到拋物線C2 , C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.
(1)求拋物線C1的解析式及頂點(diǎn)坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點(diǎn)D落在拋物線C2的對稱軸上時(shí),求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點(diǎn)P,使△ PAC為等邊三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).
(1)請畫出△ABC關(guān)于y軸的對稱圖形△A′B′C′,其中A點(diǎn)的對應(yīng)點(diǎn)是A′,B點(diǎn)的對應(yīng)點(diǎn)是B′,C點(diǎn)的對應(yīng)點(diǎn)是C′,并寫出A′,B′,C′三點(diǎn)的坐標(biāo).
(2)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點(diǎn)A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于M,則點(diǎn)M的表示的數(shù)為________________.
【答案】
【解析】AC=AM==,∴AM=
【題型】填空題
【結(jié)束】
11
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的中線,點(diǎn)E在AC上,且∠CDE=20°,現(xiàn)將△CDE沿直線DE折疊得到△FDE,連結(jié)BF.∠BFE的度數(shù)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AD=AE,若添加一個(gè)條件不能得到“△ABD≌△ACE”是( 。
A. ∠ABD=∠ACE B. BD=CE C. ∠BAD=∠CAE D. ∠BAC=∠DAE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店有一款暢銷服裝原價(jià)為40元,該商店規(guī)定:若顧客購買服裝數(shù)量在20件以內(nèi),則按原價(jià)進(jìn)行銷售:若顧客購買服裝數(shù)量超過20件,超過的部分每件可以享受指定的折扣,現(xiàn)八班同學(xué)為參加學(xué)校秋季運(yùn)動會,準(zhǔn)備統(tǒng)一向該商店購買該款服裝,所需費(fèi)用元與購買數(shù)量件之間的函數(shù)關(guān)系如圖所示,那么購買數(shù)量超過20件的部分每件享受到的折扣是
A. 9折B. 8折C. 折D. 7折
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com