【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).

(1)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;

(2)設P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.

【答案】(1)見解析;(2)3.

【解析】

(1)根據(jù)新的運算規(guī)則知|x|+|y|=1,據(jù)此可以畫出符合題意的圖形;

(2)根據(jù)新的運算規(guī)則知d(M,Q)=|x2|+|y1|=|x2|+|x+21|=|x2|+|x+1|,然后由絕對值與數(shù)軸的關系可知,|x2|+|x+1|表示數(shù)軸上實數(shù)x所對應的點到數(shù)21所對應的點的距離之和,其最小值為3.

(1)由題意,得|x|+|y|=1,

d(O,P)=1,O(0,0),P(x,y)

d(0,P)=|x|+|y|

|x|+|y|=1

x≥0,y≥0,

x+y=1,

y=1﹣x;

x≤0,y≤0,

﹣x﹣y=1,

y=﹣x﹣1;

x≥0,y≤0,

x﹣y=1,

y=x﹣1;

x≤0,y≥0,

﹣x+y=1,

y=1+x.

將四個函數(shù)關系式表示在數(shù)軸上,所有符合條件的點P組成的圖形如圖所示:

(2)d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,

又∵x可取一切實數(shù),|x﹣2|+|x+1|表示數(shù)軸上實數(shù)x所對應的點到數(shù)2和﹣1所對應的點的距離之和,其最小值為3.

∴點M(2,1)到直線y=x+2的直角距離為3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1在等腰Rt△ABC,BAC=90°EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,CEDABC的下方時AB=2,CE=2求線段AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為 2000 元,1700 元的A,B兩種型號的凈水器,下表是近兩周的銷售情況:

1)求A,B兩種型號的凈水器的銷售單價;

2)若電器公司準備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?

3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實現(xiàn)利潤超過12800 元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EFA,GD=5.

(1)指出圖中所有的相似三角形;

(2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、10、2030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6y軸與點C.E是直線AB上的動點,過點EEFx軸交AC于點F,交拋物線于點G.

(1)求拋物線y=-x2+bx+c的表達式;

(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;

(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;

②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BOC=60°,點ABO延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB2cm/s的速度移動,動點Q從點O出發(fā)沿OC1cm/s的速度移動,如果點PQ同時出發(fā),用t(s)表示移動的時間,當t=_____s時,△POQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x<0)的圖象經(jīng)過AO的中點C,交AB于點D.若點D的坐標為(﹣4,n),且AD=3.

(1)求反比例函數(shù)y=的表達式;

(2)求經(jīng)過C、D兩點的直線所對應的函數(shù)解析式;

(3)設點E是線段CD上的動點(不與點C、D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,內(nèi)的一點.

1)如圖,平分于點,點在線段上(點不與點重合),且,求證:.

2)如圖,若是等邊三角形,,以為邊作等邊,連.是等腰三角形時,試求出的度數(shù).

查看答案和解析>>

同步練習冊答案