【題目】已知:在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.求證:①△ADC≌△CEB;②DE=AD﹣BE.
【答案】證明見(jiàn)解析
【解析】
①根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質(zhì)求出∠ACD=∠CBE,根據(jù)AAS證出△ADC和△CEB全等即可;
②由①推出AD=CE,CD=BE,即可推出答案.
證明:①∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠BEC=∠ACB=∠ADC=90°,
∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△ADC和△CEB中
∴△ADC≌△CEB(AAS).
②∵△ADC≌△CEB,
∴AD=CE,BE=CD,
∴CECD=ADBE,
∵DE=CECD,
∴DE=ADBE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的解題過(guò)程,再解決問(wèn)題.
解方程: x4 -6x2 +5=0.
這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的通常解法是:
設(shè) x2 = y ,則原方程可化為 y2 -6y+5=0.①
解這個(gè)方程,得 y1 =1, y2 =5.當(dāng) y =1時(shí), x=±1;當(dāng) y=5時(shí), x=±.所以原方程有四個(gè)根: x1 =1, x2 =-1, x3 =, x4 =-.
(1)填空:在由原方程得到方程①的過(guò)程中,利用________法達(dá)到降次的目的,體現(xiàn)了________的數(shù)學(xué)思想.
(2)解方程:( x2 -x )2 -4(x2 -x )-12=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行慢跑練習(xí),慢跑路程y(米)與所用時(shí)間t(分鐘)之間的關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是( )
A. 前2分鐘,乙的平均速度比甲快
B. 5分鐘時(shí)兩人都跑了500米
C. 甲跑完800米的平均速度為100米/分
D. 甲乙兩人8分鐘各跑了800米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P是BC邊上一動(dòng)點(diǎn),連結(jié)AP,AP的垂直平分線交BD于點(diǎn)G,交 AP于點(diǎn)E,在P點(diǎn)由B點(diǎn)到C點(diǎn)的運(yùn)動(dòng)過(guò)程中,∠APG的大小變化情況是( )
A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次科技知識(shí)競(jìng)賽中,兩組學(xué)生成績(jī)統(tǒng)計(jì)如下表,通過(guò)計(jì)算可知兩組的方差為 , .下列說(shuō)法:
①兩組的平均數(shù)相同;
②甲組學(xué)生成績(jī)比乙組學(xué)生成績(jī)穩(wěn)定;
③甲組成績(jī)的眾數(shù)>乙組成績(jī)的眾數(shù);
④兩組成績(jī)的中位數(shù)均為80,但成績(jī)≥80的人數(shù)甲組比乙組多,從中位數(shù)來(lái)看,甲組成績(jī)總體比乙組好;⑤成績(jī)高于或等于90分的人數(shù)乙組比甲組多,高分段乙組成績(jī)比甲組好.其中正確的共有( )
分?jǐn)?shù) | 50 | 60 | 70 | 80 | 90 | 100 | |
人 | 甲組 | 2 | 5 | 10 | 13 | 14 | 6 |
乙組 | 4 | 4 | 16 | 2 | 12 | 12 |
A. 2種 B. 3種 C. 4種 D. 5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠ABC與∠ACB的平分線相交于點(diǎn) O,過(guò)點(diǎn)O作DE∥BC,分別交AB、AC于點(diǎn)D、E,若AB=10,AC=8,則△ADE的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過(guò)點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、F、C、D四點(diǎn)在同一條直線上,AF=CD,AB∥DE,且AB=DE.
(1)求證:△ABC≌△DEF;
(2)若EF=3,DE=4,∠DEF=90°,請(qǐng)直接寫出使四邊形EFBC為菱形時(shí)AF的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com