【題目】如圖,四邊形ABCD是一片水田,某村民小組需計算其面積,測得如下數(shù)據(jù):
∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.
請你計算出這片水田的面積.
(參考數(shù)據(jù):sin54°≈0.809,cos54°≈0.588,tan54°≈1.376, ≈1.732)

【答案】解:作CM⊥BD于M,如圖所示:
∵∠A=90°,∠ABD=60°,
∴∠ADB=30°,
∴BD=2AB=400m,
∴AD= AB=200 m,
∴△ABD的面積= ×200×200 =20000 (m2),
∵∠CMB=90°,∠CBD=54°,
∴CM=BCsin54°=300×0.809=242.7m,
∴△BCD的面積= ×400×242.7=48540(m2),
∴這片水田的面積=20000 +48540≈83180(m2).

【解析】作CM⊥BD于M,由含30°角的直角三角形的性質(zhì)求出BD,由勾股定理求出AD,求出△ABD的面積,再由三角函數(shù)求出CM,求出△BCD的面積,然后根據(jù)S四邊形ABCD=SABD+SBCD列式計算即可得解.本題考查了勾股定理,由含30°角的直角三角形的性質(zhì),三角函數(shù)的運用;熟練掌握勾股定理,由三角函數(shù)求出CM是解決問題的關(guān)鍵.
【考點精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)

(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把八個等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個正八邊形,設(shè)正八邊形內(nèi)側(cè)八個扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個扇形(陰影部分)面積之和為S2 , 則 =(

A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠AOB=41°,點P為∠AOB內(nèi)的一點,分別作出P點關(guān)于OA,OB的對稱點,,連接OAM,交OBN,,則PMN的周長為_________,∠MPN________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D、EBC上,連接AD、AE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖:某學(xué)校正在進行校園環(huán)境的改造工程設(shè)計,準備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點P),到花壇的兩邊AB、BC的距離相等,并且點P到點A、D的距離也相等.請用尺規(guī)作圖作出栽種桂花樹的位置點P(不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知反比例函數(shù)y= 與一次函數(shù)y=x+2的圖象交于點A(﹣3,m)
(1)求反比例函數(shù)的解析式;
(2)如果點M的橫、縱坐標都是不大于3的正整數(shù),求點M在反比例函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,﹣3).
(1)求該函數(shù)的解析式;
(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n>0)個單位得到點P′,使點P′恰好在該函數(shù)的圖象上,求n的值和點P沿y軸平移的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+4與坐標軸分別交于C、B兩點,過點C作CD⊥x軸,點P是x軸下方直線CD上的一點,且△OCP與△OBC相似,求過點P的雙曲線解析式.

查看答案和解析>>

同步練習(xí)冊答案