【題目】某市在開(kāi)展線上教學(xué)活動(dòng)期間,為更好地組織初中學(xué)生居家體育鍛煉,隨機(jī)抽取了部分初中學(xué)生對(duì)“最喜愛(ài)的體育鍛煉項(xiàng)目”進(jìn)行線上問(wèn)卷調(diào)查(每人必須且只選其中一項(xiàng)),得到如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
類別 | 項(xiàng) 目 | 人數(shù) |
A | 跳繩 | 59 |
B | 健身操 | ▲ |
C | 俯臥撐 | 31 |
D | 開(kāi)合跳 | ▲ |
E | 其它 | 22 |
(1)求參與問(wèn)卷調(diào)查的學(xué)生總?cè)藬?shù).
(2)在參與問(wèn)卷調(diào)查的學(xué)生中,最喜愛(ài)“開(kāi)合跳”的學(xué)生有多少人?
(3)該市共有初中學(xué)生約8000人,估算該市初中學(xué)生中最喜愛(ài)“健身操”的人數(shù).
【答案】(1)200;(2)48;(3)1600
【解析】
(1)從統(tǒng)計(jì)圖表中可得,“E組 其它”的頻數(shù)為22,所占的百分比為11%,可求出調(diào)查學(xué)生總數(shù);
(2)“開(kāi)合跳”的人數(shù)占調(diào)查人數(shù)的24%,即可求出最喜愛(ài)“開(kāi)合跳”的人數(shù);
(3)求出“健身操”所占的百分比,用樣本估計(jì)總體,即可求出8000人中喜愛(ài)“健身操”的人數(shù).
解:(1)22÷11%=200.
∴參與問(wèn)卷調(diào)查的學(xué)生總?cè)藬?shù)為200人.
(2)200×24%=48.
答:最喜愛(ài)“開(kāi)合跳”的學(xué)生有48人.
(3)抽取學(xué)生中最喜愛(ài)“健身操”的初中學(xué)生有200-59-31-48-22=40(人),
.
∴最喜愛(ài)“健身操”的初中學(xué)生人數(shù)約為1600人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O切線,切點(diǎn)為A,OB與⊙O交于E,C、D是圓上的兩點(diǎn),且CA平分∠DCE,若AB=,∠B=30°,則DE的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸相交于,兩點(diǎn),與軸相交于點(diǎn),連接,已知,拋物線的對(duì)稱軸交軸于點(diǎn).
備用圖
(1)求該拋物線的解析式;
(2)連接,能否在拋物線上找到一點(diǎn),使得,若有求點(diǎn)的坐標(biāo),若沒(méi)有說(shuō)明理由;
(3)若點(diǎn)為上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸交于點(diǎn),過(guò)點(diǎn)作,垂足為,當(dāng)的周長(zhǎng)最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某浴室花灑實(shí)景圖,圖2是該花灑的側(cè)面示意圖.已知活動(dòng)調(diào)節(jié)點(diǎn)B可以上下調(diào)整高度,離地面CD的距離BC=160cm.設(shè)花灑臂與墻面的夾角為α,可以扭動(dòng)花灑臂調(diào)整角度,且花灑臂長(zhǎng)AB=30cm.假設(shè)水柱AE垂直AB直線噴射,小華在離墻面距離CD=120cm處淋浴.
(1)當(dāng)α=30°時(shí),水柱正好落在小華的頭頂上,求小華的身高DE.
(2)如果小華要洗腳,需要調(diào)整水柱AE,使點(diǎn)E與點(diǎn)D重合,調(diào)整的方式有兩種:
①其他條件不變,只要把活動(dòng)調(diào)節(jié)點(diǎn)B向下移動(dòng)即可,移動(dòng)的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫(xiě)出你的結(jié)論;
②活動(dòng)調(diào)節(jié)點(diǎn)B不動(dòng),只要調(diào)整α的大小,在圖3中,試求α的度數(shù).
(參考數(shù)據(jù):≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)閉合時(shí)的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動(dòng).
(1)當(dāng)E,F兩點(diǎn)的距離最大值時(shí),以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形的周長(zhǎng)是_____ cm.
(2)當(dāng)夾子的開(kāi)口最大(點(diǎn)C與點(diǎn)D重合)時(shí),A,B兩點(diǎn)的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在開(kāi)展線上教學(xué)活動(dòng)期間,為更好地組織初中學(xué)生居家體育鍛煉,隨機(jī)抽取了部分初中學(xué)生對(duì)“最喜愛(ài)的體育鍛煉項(xiàng)目”進(jìn)行線上問(wèn)卷調(diào)查(每人必須且只選其中一項(xiàng)),得到如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
類別 | 項(xiàng) 目 | 人數(shù) |
A | 跳繩 | 59 |
B | 健身操 | ▲ |
C | 俯臥撐 | 31 |
D | 開(kāi)合跳 | ▲ |
E | 其它 | 22 |
(1)求參與問(wèn)卷調(diào)查的學(xué)生總?cè)藬?shù).
(2)在參與問(wèn)卷調(diào)查的學(xué)生中,最喜愛(ài)“開(kāi)合跳”的學(xué)生有多少人?
(3)該市共有初中學(xué)生約8000人,估算該市初中學(xué)生中最喜愛(ài)“健身操”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,F是⊙O上一點(diǎn),∠BAF的平分線交⊙O于點(diǎn)E,交⊙O的切線BC于點(diǎn)C,過(guò)點(diǎn)E作ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D.
(1)求證:DE是⊙O的切線;
(2)若DE=3,CE=2,
①求值;
②若點(diǎn)G 為AE上一點(diǎn),求OG+EG最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù),當(dāng)時(shí),函數(shù)有最大值.
(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn);
(2)將函數(shù)圖象軸下方部分沿軸向上翻折,得到的新圖象,若點(diǎn)是翻折得到的拋物線弧部分上任意一點(diǎn),若關(guān)于的一元二次方程恒有實(shí)數(shù)根時(shí),求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com