【題目】甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實驗可能是(
A.擲一枚正六面體的骰子,出現(xiàn)1點的概率
B.拋一枚硬幣,出現(xiàn)正面的概率
C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
D.任意寫一個整數(shù),它能被2整除的概率

【答案】C
【解析】解:A、擲一枚正六面體的骰子,出現(xiàn)1點的概率為 ,故此選項錯誤; B、擲一枚硬幣,出現(xiàn)正面朝上的概率為 ,故此選項錯誤;
C、從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是: = ≈0.33;故此選項正確;
D、任意寫出一個整數(shù),能被2整除的概率為 ,故此選項錯誤.
故選:C.
根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ABC=ADC,DE垂直于對角線AC,垂足是E,連接BE.

(1)求證:四邊形ABCD是平行四邊形;

(2)若點E是AC的中點,判斷BE與AC的位置關(guān)系,并說明理由;

(3)若ABE是等邊三角形,AD=,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分10分如圖,在平面直角坐標系中,正方形ABCD和正方形DEFG的邊長分別為,點A、D、G在軸上,坐標原點O為AD的中點,拋物線過C、F兩點,連接FD并延長交拋物線于點M

(1),求m和b的值;

(2)的值;

(3)判斷以FM為直徑的圓與AB所在直線的位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如不等式組 解集為2<x<3,則a,b的值分別為( )
A.﹣2,3
B.2,﹣3
C.3,﹣2
D.﹣3,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)在一次用頻率估計概率的實驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率給出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的實驗可能是( 。

A.擲一枚正六面體的骰子,出現(xiàn)5點的概率
B.擲一枚硬幣,出現(xiàn)正面朝上的概率
C.任意寫出一個整數(shù),能被2整除的概率
D.一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M和N表示單項式,且3x(M﹣5x)=6x2y2+N,則M= , N=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點E,F(xiàn),G,連接ED,DG.

(1)請判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=30°,∠C=45°,ED=,點H是BD上的一個動點,求HG+HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c、d為四邊形的四邊長,a、c為對邊,且滿足a2+b2+c2+d2=2ac+2bd,則這個四邊形一定是______四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在①(-1)-3=1;②(-1)3=-3;③3a-2= ;④(-x)5÷(-x)-2=-x7中,不正確的式子有(  )


A.①②
B.②③
C.①②③
D.①②③④

查看答案和解析>>

同步練習(xí)冊答案