【題目】如圖,已知拋物線(xiàn) (其中 )與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸l與x軸交于點(diǎn)D,且點(diǎn)D恰好在線(xiàn)段BC的垂直平分線(xiàn)上.
(1)求拋物線(xiàn)的關(guān)系式;
(2)過(guò)點(diǎn) 的線(xiàn)段MN∥y軸,與BC交于點(diǎn)P,與拋物線(xiàn)交于點(diǎn)N.若點(diǎn)E是直線(xiàn)l上一點(diǎn),且∠BED=∠MNB-∠ACO時(shí),求點(diǎn)E的坐標(biāo).
【答案】
(1)
解:求得點(diǎn)A(-1,0)、B(b,0)、C(0,b),
易得∠ACB=90°,由△AOC∽△COB可得b1=4,b2=0(舍去),
∴y=x2+x+2.
(2)
解:易證∠ACO=∠CBO,∠MNB=∠MBN,所以∠BED=∠CBN,
連結(jié)CN, 由勾股定理得CN=,BC=,BN=,
由勾股定理逆定理證得∠CNB=90°,從而得tan∠BED =tan∠CBN =,
然后解Rt△BED可得DE=,
∴點(diǎn)E坐標(biāo)為(,) 或(,).
【解析】(1)根據(jù)△AOC∽△COB求得b的值,在利用待定系數(shù)法解出解析式即可.
(2) 由勾股定理得CN=,BC=,BN=,由勾股定理逆定理證得∠CNB=90°,從而得tan∠BED =tan∠CBN =, 然后解Rt△BED解出DE的長(zhǎng)即可得出點(diǎn)E坐標(biāo).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y= 與y=﹣kx+1(k≠0)在同一直角坐標(biāo)系中的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+3x+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,8),直線(xiàn)l經(jīng)過(guò)原點(diǎn)O,與拋物線(xiàn)的一個(gè)交點(diǎn)為D(6,8).
(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)l交于點(diǎn)E,點(diǎn)T為x軸上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).
①當(dāng)∠TEC=∠TEO時(shí),求點(diǎn)T的坐標(biāo);
②直線(xiàn)BT與y軸交于點(diǎn)P,與直線(xiàn)l交于點(diǎn)Q,當(dāng)OP=OQ時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線(xiàn)分別交AB和AC于點(diǎn)D,E.
(1)求證:AE=2CE;
(2)連接CD,請(qǐng)判斷△BCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l1:y=mx(m≠0) 與直線(xiàn)l2:y=ax+b(a≠0) 相交于點(diǎn) A(1,2),直線(xiàn)l2與 x軸交于點(diǎn)B(3,0).
(1)分別求直線(xiàn)l1 和l2的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(0,n)且平行于x軸的直線(xiàn)與l1 ,l2的交點(diǎn)分別為C ,D,當(dāng)點(diǎn) C 位于點(diǎn) D 左方時(shí),寫(xiě)出 n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長(zhǎng)為的正方形, 區(qū)是邊長(zhǎng)為的正方形.
(1)列式表示每個(gè)區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);
(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);
(3)如果, ,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,能否在AB上確定一點(diǎn)E,使△BDE的周長(zhǎng)等于AB的長(zhǎng)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com