【題目】1的中線,的取值范圍是__________.

2)在(1)問的啟發(fā)下,解決下列問題:如圖,的中線,,交,且,求證:

【答案】12)見解析

【解析】

1)根據(jù)倍長中線法將AD延長一倍,再證△ADC≌△GDB,根據(jù)三角形的三邊關(guān)系即可求出AG的取值范圍,從而求出AD的取值范圍;

2)由(1)中結(jié)論:△ADC≌△GDB,即可得到:AC=BG,∠CAD=G,再根據(jù)等腰三角形的性質(zhì)和判定即可得到BG=BF=AC.

1)將AD延長至G,使AD=DG,連接BG,如下圖所示:

在△ADC和△GDB

∴△ADC≌△GDB

AC=BG=6

在△ABG

2)將AD延長至G,使AD=DG,連接BG,如下圖所示:

由(1)中結(jié)論:△ADC≌△GDB

AC=BG,∠CAD=G

又∵,

BG=BF=AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一張五邊形的鋼板ABCDE如圖所示,∠A=∠B=∠C=90°,現(xiàn)在AB邊上取一點P,分別以AP,BP為邊各剪下一個正方形鋼板模型,所剪得的兩個正方形面積和的最大值為_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加植樹活動,要求每人植棵,活動結(jié)束后隨機抽查了名學(xué)生每人的植樹量,并分為四種類型,棵;;棵;棵,棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤。

回答下列問題:

1)寫出條形圖中存在的錯誤,并說明理由.

2)寫出這名學(xué)生每人植樹量的眾數(shù)、中位數(shù).

3)在求這名學(xué)生每人植樹量的平均數(shù).

4)估計這名學(xué)生共植樹多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組)并將解集在數(shù)軸上表示出來

(1)+1x

(2)

分解因式

(3)m2(a﹣1)﹣2m(a﹣1)+(a﹣1)

(4)(a2﹣2ab+b2)﹣4

化簡:

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);

(3)當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC紙片中,∠C=90°,AC=3BC=4,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB’DAB'與邊BC交于點E.若△DEB’為直角三角形,則BD的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長分別是5,68,因為,所以這個三角形是常態(tài)三角形。

1)若△ABC三邊長分別是24,則此三角形_________常態(tài)三角形(填不是);

2)若RtABC是常態(tài)三角形,則此三角形的三邊長之比為__________________(請按從小到大排列);

3)如圖,RtABC中,∠ACB=90°,BC=6,點DAB的中點,連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形、…按如圖所示的方式放置.、、…和點、、…別在直線軸上,則點的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60°,點C為弧BD的中點,則AC的長是__

查看答案和解析>>

同步練習(xí)冊答案