【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦相交于點,

1)求證:

2)若,,求⊙的半徑;

3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點交⊙, 兩點(點在線段上),求的長.

【答案】1)見解析;(2)⊙的半徑為;(3.

【解析】

1)連接,根據(jù)圓心角的性質(zhì)即可求解;

2)根據(jù)圓的性質(zhì)求得,求出AC,再根據(jù)勾股定理進行求解;

3)根據(jù),分線段成比例得,再求出PA,PO,過點于點,則,求得根據(jù),即,求出OH,PH,連接,根據(jù)

中,由勾股定理,求得 ,由 進行求解.

1)連接,

.

,

.

,

.

2)連接.

,

.

,

.

.

.

的直徑,

.

中,由勾股定理,得.

的半徑為.

3)如圖,設(shè)相交于點N.

的直徑,

,

.

的切線,

.

.

.

.

.

.

過點于點,則,

,

.

,

.

連接.

中,由勾股定理,得,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,BAADDC,點ECB延長線上,BEAD,連接ACAE

求證:AEAC;

ABAC FBC的中點,試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC,BC是⊙O的兩條弦,過點C作∠BCD=∠A,CDAB的延長線于點D

1)試說明:CD是⊙O的切線;

2)若tanA,求的值;

3)在(2)的條件下,若AB7DE平分∠ADCAC于點E,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角△ABC中,AB4BC5,∠ACB45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1

1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;

3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內(nèi)接于為直徑,

過點于點的延長線于點,連接于點

求證: 的切線;

若點的中點,求證:

,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行了“防溺水”知識競賽,八年級兩個班選派10名同學參加預賽,依據(jù)各參賽選手的成績(均為整數(shù))繪制了統(tǒng)計表和折線統(tǒng)計圖(如圖所示).

(1)統(tǒng)計表中,a=________, b =________;

(2)若從兩個班的預賽選手中選四名學生參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額 在成績?yōu)?/span>98分的學生中任選兩個,求另外兩個決賽名額落在不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EF分別在矩形ABCD的邊AB,BC上,連接EF,將BEF沿直線EF翻折得到HEFAB8,BC6AEEB31

1)如圖1,當∠BEF45°時,EH的延長線交DC于點M,求HM的長;

2)如圖2,當FH的延長線經(jīng)過點D時,求tanFEH的值;

3)如圖3,連接AHHC,當點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時,yx的增大而減小;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號)

查看答案和解析>>

同步練習冊答案