【題目】如圖,在正方形中,,相切于點(diǎn),是正方形與圓的另兩個交點(diǎn).

1__________,圓心到直線的距離為__________

2)求的半徑長和的值.

【答案】12,4;(2,

【解析】

1)連接,根據(jù)的圓周角所對的弦是直徑,可以得到為直徑,而相切于點(diǎn),連接為半徑,所以;連接,,由于的中點(diǎn),且,所以;

2)延長于點(diǎn),則,,而由(1)得,從而得到四邊形是矩形,設(shè)的半徑為,則,由 列出勾股定理得方程,解出即可;根據(jù)在同圓中,同弧所對得圓周角相等,可以把的正弦值轉(zhuǎn)化為,即可求解;

解:(1)連接,連接

為直徑

點(diǎn)在

為半徑

連接,

的中點(diǎn),且

2)連接,并延長于點(diǎn),

則有

過點(diǎn),垂足為,則有

∴四邊形是矩形.

設(shè)的半徑為

四邊形為正方形,

∴在中,,解得

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c0的兩個非零實(shí)數(shù)根分別為x1,x2,則x1+x2=﹣x1x2.

解決下列問題:已知關(guān)于x的一元二次方程(x+n)26x有兩個非零不等實(shí)數(shù)根x1,x2,設(shè)m,

()當(dāng)n1時,求m的值;

()是否存在這樣的n值,使m的值等于?若存在,求出所有滿足條件的n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊的邊為直徑作,分別交,于點(diǎn),,過點(diǎn)于點(diǎn)

1)求證:的切線;

2)若等邊的邊長為8,求由、圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種進(jìn)價為每件10元的日用商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件)與銷售單價(元)滿足,設(shè)銷售這種商品每天的利潤為(元).

1)求之間的函數(shù)關(guān)系式;

2)在保證銷售量盡可能大的前提下,該商場每天還想獲得2000元的利潤,應(yīng)將銷售單價定為多少元?

3)當(dāng)每天銷售量不少于50件,且銷售單價至少為32元時,該商場每天獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于兩點(diǎn),且,兩點(diǎn)均在直線的下方,那么下列說法正確的是(

A.拋物線開口一定向上B.拋物線的頂點(diǎn)不可能在第四象限

C.拋物線與已知直線有兩個交點(diǎn)D.拋物線的對稱軸可能在軸右側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長凝大蒜產(chǎn)于榆次區(qū)長凝鎮(zhèn),種植歷史悠久,清初曾被選為皇家貢品,在晉中以及省內(nèi)外享有盛譽(yù).秋天勤勞的農(nóng)民們將大蒜編成串后進(jìn)行銷售.小樂通過網(wǎng)店推廣家鄉(xiāng)特產(chǎn),銷售大蒜.每串大蒜的成本是6元,銷售一段時間后,發(fā)現(xiàn)當(dāng)售價為每串25元時,平均每天能售出12串.小樂想讓更多的人嘗到長凝大蒜,因此進(jìn)行了降價銷售,經(jīng)調(diào)查發(fā)現(xiàn),每串大蒜每降價0.5元,平均每天多售出2串.若小樂既想保證平均每天獲利420元,又想擴(kuò)大銷售量,那么每串大蒜應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90AC=2,BC=3.點(diǎn)DAC的中點(diǎn),聯(lián)結(jié)BD,過點(diǎn)CCGBD,交AC的垂線AG于點(diǎn)G,GC分別交BA、BD于點(diǎn)FE

1)求GA的長;

2)求△AFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過、兩點(diǎn),與軸的另一個交點(diǎn)為,點(diǎn)軸上,且

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個動點(diǎn)的橫坐標(biāo)為

①當(dāng)時,求四邊形的面積的函數(shù)關(guān)系式,并求出的最大值;

②點(diǎn)在直線上,若以為邊,點(diǎn)、、為頂點(diǎn)的四邊形是平行四邊形,請求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案