【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)∠EPC=90°;(3)∠ABC+∠EPC=180°.
【解析】
試題分析:(1)先證出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;
(2)由△ABP≌△CBP,得∠BAP=∠BCP,進(jìn)而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結(jié)論;
(3)借助(1)和(2)的證明方法容易證明結(jié)論.
(1)證明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∵PA=PE,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°,
∵∠ABC=90°,
∴∠EPC=90°;
(3)∠ABC+∠EPC=180°,
理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP,
∵PA=PE,
∴∠DAP=∠DCP,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作不軸的垂線交直于點(diǎn)以原點(diǎn)為圓心,的長(zhǎng)為半徑斷弧交軸正半軸于點(diǎn);再過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,以的長(zhǎng)為半徑畫(huà)弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,則的長(zhǎng)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點(diǎn)F,經(jīng)過(guò)垂足D的直線分別交直線CA,BC于點(diǎn)M,N.
(1)若AC=3,BC=4,AB=5,求CD的長(zhǎng);
(2)當(dāng)∠AMN=32°,∠B=38°時(shí),求∠MDB的度數(shù);
(3)當(dāng)∠AMN=∠BDN時(shí),寫(xiě)出圖中所有與∠CDN相等的角,并選擇其中一組進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1并寫(xiě)出點(diǎn)B1的坐標(biāo);
(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對(duì)稱(chēng),請(qǐng)畫(huà)出直線l及△ABC關(guān)于直線l對(duì)稱(chēng)的△A2B2C2,并直接寫(xiě)出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對(duì)稱(chēng)軸及線段AB的長(zhǎng);
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-4,0).過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2018的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】概念學(xué)習(xí):規(guī)定:求若干個(gè)相同有理數(shù)(均不為0)的除法運(yùn)算叫做除方,如,等,類(lèi)比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方”,記作,讀作“的圈4次方”,一般地,把記作讀作“a的圈n次方”.
初步探究:
(1)直接寫(xiě)出計(jì)算結(jié)果________,________;
(2)關(guān)于除方,下列說(shuō)法不正確的是________.
A.任何非零數(shù)的圈2次方都等于1
B.對(duì)于任何正整數(shù)n,
C.
D.負(fù)數(shù)的圈奇次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶次方結(jié)果是正數(shù)
深入思考:
我們知道有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
(1)試一試:將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式:______;______;______.
(2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫(xiě)成冪的形式為________.
(3)算一算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)七年級(jí)開(kāi)展演講比賽,學(xué)校決定購(gòu)買(mǎi)一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買(mǎi)一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問(wèn):
(1)如果購(gòu)買(mǎi)鋼筆(不小于20)支,則在甲店購(gòu)買(mǎi)需付款 ______ 元,在乙店購(gòu)買(mǎi)需付款 _______________ 元.(用x的代數(shù)式表示)
(2)當(dāng)購(gòu)買(mǎi)鋼筆多少支時(shí),在兩店購(gòu)買(mǎi)付款一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測(cè)得乙的頂部處的俯角為48°,測(cè)得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,,.結(jié)果取整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com