如圖,⊙O的半徑為2,點(diǎn)O到直線(xiàn)l的距離為3,點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),PQ切⊙O于點(diǎn)Q,則PQ的最小值為(  )
A.
13
B.
5
C.3D.2

∵PQ切⊙O于點(diǎn)Q,
∴∠OQP=90°,
∴PQ2=OP2-OQ2,
而OQ=2,
∴PQ2=OP2-4,即PQ=
OP2-4
,
當(dāng)OP最小時(shí),PQ最小,
∵點(diǎn)O到直線(xiàn)l的距離為3,
∴OP的最小值為3,
∴PQ的最小值為
9-4
=
5

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,菱形ABCD的邊長(zhǎng)為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以
3
cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線(xiàn)AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)P異于A、C時(shí),請(qǐng)說(shuō)明PQBC;
(2)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問(wèn):在整個(gè)運(yùn)動(dòng)過(guò)程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD內(nèi)接于以BC為直徑的⊙O,且AB=AD,延長(zhǎng)CB、DA,交于P點(diǎn),CE與⊙O相切于點(diǎn)C,CE與PD的延長(zhǎng)線(xiàn)交于點(diǎn)E.當(dāng)PB=OC,CD=18時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線(xiàn)上,且∠CBF=
1
2
∠CAB.
(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);
(2)若AB=5,sin∠CBF=
5
5
,求BC和BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA與⊙O相切于點(diǎn)A,PC經(jīng)過(guò)⊙O的圓心且與該圓相交于兩點(diǎn)B、C,若PA=4,PB=2,則sinP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直角梯形ABCD中,ADBC,∠B=90°,BC=2AB=2AD=4.以AB為直徑作⊙O,點(diǎn)P在梯形內(nèi)的半圓弧上運(yùn)動(dòng),則△CPD的最小面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,點(diǎn)F在CD上,點(diǎn)O是BF的中點(diǎn),以BF為直徑的半圓與AD相切于點(diǎn)E.
(1)求證:點(diǎn)E是AD的中點(diǎn);
(2)設(shè)BF=5,求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為
2
,A、B兩點(diǎn)在⊙O上,切線(xiàn)AQ和BQ相交于Q,P是AB延長(zhǎng)線(xiàn)上任一點(diǎn),QS⊥OP于S,則OP•OS=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知l是⊙O的切線(xiàn),⊙O的直徑AB=10cm,那么點(diǎn)A、B到直線(xiàn)l的距離之和為_(kāi)_____cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案