【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)y= (x>0)的圖象經過AO的中點C,且與AB相交于點D,OB=4,AD=3,

(1)求反比例函數(shù)y= 的解析式;
(2)求cos∠OAB的值;
(3)求經過C、D兩點的一次函數(shù)解析式.

【答案】
(1)

解:設點D的坐標為(4,m)(m>0),則點A的坐標為(4,3+m),

∵點C為線段AO的中點,

∴點C的坐標為(2, ).

∵點C、點D均在反比例函數(shù)y= 的函數(shù)圖象上,

,解得:

∴反比例函數(shù)的解析式為y=


(2)

解:∵m=1,

∴點A的坐標為(4,4),

∴OB=4,AB=4.

在Rt△ABO中,OB=4,AB=4,∠ABO=90°,

∴OA= =4 ,cos∠OAB= =


(3)

解:∵m=1,

∴點C的坐標為(2,2),點D的坐標為(4,1).

設經過點C、D的一次函數(shù)的解析式為y=ax+b,

則有 ,解得:

∴經過C、D兩點的一次函數(shù)解析式為y=﹣ x+3


【解析】(1)設點D的坐標為(4,m)(m>0),則點A的坐標為(4,3+m),由點A的坐標表示出點C的坐標,根據(jù)C、D點在反比例函數(shù)圖象上結合反比例函數(shù)圖象上點的坐標特征即可得出關于k、m的二元一次方程,解方程即可得出結論;(2)由m的值,可找出點A的坐標,由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結論;(3)由m的值,可找出點C、D的坐標,設出過點C、D的一次函數(shù)的解析式為y=ax+b,由點C、D的坐標利用待定系數(shù)法即可得出結論.本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、解直角三角形以及待定系數(shù)法求函數(shù)解析式,解題的關鍵是(1)由反比例函數(shù)圖象上點的坐標特征找出關于k、m的二元一次方程組(2)求出點A的坐標;(2)求出點C、D的坐標.本題屬于基礎題,難度不大,但考查的知識點較多,解決該題型題目時,利用反比例函數(shù)圖象上點的坐標特征找出方程組,通過解方程組得出點的坐標,再利用待定系數(shù)法求出函數(shù)解析式即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售件,每件盈利元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生物小組觀察一植物生長,得到植物高度y(單位:厘米)與觀察時間x(單位:天)的關系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).

(1)該植物從觀察時起,多少天以后停止長高?

(2)求直線AC的解析式,并求該植物最高長多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 元旦期間,天虹商場用2000元購進某種品牌的毛衣共10件進行銷售,每件毛衣的標價為400元,實際銷售時,商場決定對這批毛衣全部按如下的方式進行打折銷售:一次性購買一件打8折,一次性購買兩件或兩件以上,都打6折,商場在銷售完這批毛衣后,發(fā)現(xiàn)仍能獲利44%

1)該商場在售出這批毛衣時.屬于一次性購買一件毛衣的方式有多少件?

2)小穎媽媽計劃在元且期間在天虹商場購買3件這種品牌的毛衣,請問她有哪幾種購買方案?哪一種購買方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=
(1)求k的值;
(2)設點N(1,a)是反比例函數(shù)y=(x>0)圖象上的點,在y軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在全校范圍內隨機抽取了50名同學進行我最喜愛的盧龍?zhí)禺a調查活動.

調查問卷

在下面四種盧龍?zhí)禺a中,你最喜愛的是(  )(單選)

A.段家溝李子   B.石門核桃

C.鮑子溝葡萄    D.火爐烤白薯

將調查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

請根據(jù)所給信息解答以下問題:

(1)請補全條形統(tǒng)計圖;

(2)若全校有2000名同學,請估計全校同學中最喜愛段家溝李子的同學有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校七年級學生的身高情況,隨機抽取該校男生、女生進行抽樣調查,已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:

身高情況分組表(單位:cm

組別

身高

A

145x155

B

155x160

C

160x165

D

165x170

E

170x175

根據(jù)圖表提供的信息,回答下列問題:

1)樣本中,男生人數(shù)為   人,男生身高類別B的頻率為   ;

2)樣本中,女生身高在E組的人數(shù)為   人,女生類別D的頻數(shù)所對應的扇形圓心角為   ;

3)已知該校共有男生400人,女生380人,請估計身高在160x170之間的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.

(1)求k的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,∠B=70°,BC=6,以AD為直徑的⊙O交CD于點E,則 的長為( )

A. π
B. π
C. π
D. π

查看答案和解析>>

同步練習冊答案