【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)y= (x>0)的圖象經過AO的中點C,且與AB相交于點D,OB=4,AD=3,
(1)求反比例函數(shù)y= 的解析式;
(2)求cos∠OAB的值;
(3)求經過C、D兩點的一次函數(shù)解析式.
【答案】
(1)
解:設點D的坐標為(4,m)(m>0),則點A的坐標為(4,3+m),
∵點C為線段AO的中點,
∴點C的坐標為(2, ).
∵點C、點D均在反比例函數(shù)y= 的函數(shù)圖象上,
∴ ,解得: .
∴反比例函數(shù)的解析式為y=
(2)
解:∵m=1,
∴點A的坐標為(4,4),
∴OB=4,AB=4.
在Rt△ABO中,OB=4,AB=4,∠ABO=90°,
∴OA= =4 ,cos∠OAB= =
(3)
解:∵m=1,
∴點C的坐標為(2,2),點D的坐標為(4,1).
設經過點C、D的一次函數(shù)的解析式為y=ax+b,
則有 ,解得: .
∴經過C、D兩點的一次函數(shù)解析式為y=﹣ x+3
【解析】(1)設點D的坐標為(4,m)(m>0),則點A的坐標為(4,3+m),由點A的坐標表示出點C的坐標,根據(jù)C、D點在反比例函數(shù)圖象上結合反比例函數(shù)圖象上點的坐標特征即可得出關于k、m的二元一次方程,解方程即可得出結論;(2)由m的值,可找出點A的坐標,由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結論;(3)由m的值,可找出點C、D的坐標,設出過點C、D的一次函數(shù)的解析式為y=ax+b,由點C、D的坐標利用待定系數(shù)法即可得出結論.本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、解直角三角形以及待定系數(shù)法求函數(shù)解析式,解題的關鍵是(1)由反比例函數(shù)圖象上點的坐標特征找出關于k、m的二元一次方程組(2)求出點A的坐標;(2)求出點C、D的坐標.本題屬于基礎題,難度不大,但考查的知識點較多,解決該題型題目時,利用反比例函數(shù)圖象上點的坐標特征找出方程組,通過解方程組得出點的坐標,再利用待定系數(shù)法求出函數(shù)解析式即可.
科目:初中數(shù)學 來源: 題型:
【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售件,每件盈利元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某生物小組觀察一植物生長,得到植物高度y(單位:厘米)與觀察時間x(單位:天)的關系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).
(1)該植物從觀察時起,多少天以后停止長高?
(2)求直線AC的解析式,并求該植物最高長多少厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 元旦期間,天虹商場用2000元購進某種品牌的毛衣共10件進行銷售,每件毛衣的標價為400元,實際銷售時,商場決定對這批毛衣全部按如下的方式進行打折銷售:一次性購買一件打8折,一次性購買兩件或兩件以上,都打6折,商場在銷售完這批毛衣后,發(fā)現(xiàn)仍能獲利44%.
(1)該商場在售出這批毛衣時.屬于“一次性購買一件毛衣”的方式有多少件?
(2)小穎媽媽計劃在元且期間在天虹商場購買3件這種品牌的毛衣,請問她有哪幾種購買方案?哪一種購買方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO= .
(1)求k的值;
(2)設點N(1,a)是反比例函數(shù)y=(x>0)圖象上的點,在y軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組在全校范圍內隨機抽取了50名同學進行“我最喜愛的盧龍?zhí)禺a”調查活動.
調查問卷
在下面四種盧龍?zhí)禺a中,你最喜愛的是( )(單選)
A.段家溝李子 B.石門核桃
C.鮑子溝葡萄 D.火爐烤白薯
將調查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學,請估計全校同學中最喜愛“段家溝李子”的同學有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校七年級學生的身高情況,隨機抽取該校男生、女生進行抽樣調查,已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | 145≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生人數(shù)為 人,男生身高類別B的頻率為 ;
(2)樣本中,女生身高在E組的人數(shù)為 人,女生類別D的頻數(shù)所對應的扇形圓心角為 ;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.
(1)求k的值;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com