【題目】如圖,在四邊形中,點(diǎn)和點(diǎn)是對(duì)角線上的兩點(diǎn),,且,過點(diǎn)作交的延長(zhǎng)線點(diǎn).
(1)求證:四邊形是平行四邊形;
(2)若,,則的面積是 .
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)已知條件得到AF=CE,根據(jù)平行線的性質(zhì)得到∠DFA=∠BEC,利用SAS證明△ADF≌△CBE,根據(jù)全等三角形的性質(zhì)得到AD=CB,∠DAF=∠BCE,根據(jù)平行線的判定得到AD∥CB,即可得到結(jié)論;
(2)在直角△BCG中解直角三角形求得BG、CG,在直角△ACG中解直角三角形求得AG,然后根據(jù)平行四邊形的面積公式即可得到結(jié)論.
解:(1)證明:∵AE=CF,
∴AE+EF=CF+EF,即AF=CE,
∵DF∥BE,
∴∠DFA=∠BEC,
∵DF=BE,
∴△ADF≌△CBE(SAS),
∴AD=CB,∠DAF=∠BCE,
∴AD∥CB,
∴四邊形ABCD是平行四邊形;
(2)∵CG⊥AB,
∴∠G=90°,
∵∠CBG=60°,BC=,
∴BG=BC=,CG=BC·sin60°=,
∵,即,
∴AG=,
∴AB=AG-BG=,
∴ABCD的面積=AB·CG=×6=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為斜邊AB上的一點(diǎn),以OA為半徑的與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分
(2)若,,求陰影部分的面積.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0(a≠0)的實(shí)數(shù)解;
(2)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,寫出 k的取值范圍;
(3)當(dāng)0<x<3 時(shí),寫出函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時(shí),往往可以通過旋轉(zhuǎn)解決問題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎(chǔ)上,求四邊形ABCD的面積.
[類比應(yīng)用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點(diǎn):幾何變換綜合題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=x2+ ( 2k-1)x+k+1的圖象與x軸相交于O、A兩點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式
(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6.求點(diǎn)B的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:對(duì)于關(guān)于的函數(shù),我們稱函數(shù)為函數(shù)y的m分函數(shù)(其中m為常數(shù)).
例如:對(duì)于關(guān)于x一次函數(shù)的分函數(shù)為
(1)若點(diǎn)在關(guān)于x的一次函數(shù)的分函數(shù)上,求的值;
(2)寫出反比例函數(shù)的分函數(shù)的圖象上y隨x的增大而減小的x的取值范圍: ;
(3)若是二次函數(shù)關(guān)于x的分函數(shù),
①當(dāng)時(shí),求y的取值范圍;
②當(dāng)時(shí),,則的取值范圍為 ;
③若點(diǎn),連結(jié),當(dāng)關(guān)于的二次函數(shù)的分函數(shù),與線段MN有兩個(gè)交點(diǎn),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | … |
給出以下結(jié)論:(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;(2)當(dāng)﹣<x<2時(shí),y<0;(3)已知點(diǎn)A(x1,y1)、B(x2,y2)在函數(shù)的圖象上,則當(dāng)﹣1<x1<0,3<x2<4時(shí),y1>y2.上述結(jié)論中正確的結(jié)論個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為( 。
A. 2B. 3C. 4D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com