【題目】閱讀下面的材料:

解方程x4﹣7x2+12=0這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設(shè)x2=y,則x4=y2,原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當(dāng)y=3時,x2=3,x=±,當(dāng)y=4時,x2=4,x=±2.原方程有四個根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運用上述方法解答下列問題.

(1)解方程:(x2+x)2﹣5(x2+x)+4=0;

(2)已知實數(shù)a,b滿足(a2+b22﹣3(a2+b2)﹣10=0,試求a2+b2的值.

【答案】見解析

【解析】解:(1)設(shè)y=x2+x,則y2﹣5y+4=0,

整理,得

(y﹣1)(y﹣4)=0,

解得y1=1,y2=4,

當(dāng)x2+x=1即x2+x﹣1=0時,解得:x=;

當(dāng)當(dāng)x2+x=4即x2+x﹣4=0時,解得:x=

綜上所述,原方程的解為x1,2=,x3,4=;

(2)設(shè)x=a2+b2,則x2﹣3x﹣10=0,

整理,得

(x﹣5)(x+2)=0,

解得y1=5,y2=﹣2(舍去),

故a2+b2=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把線段BD 繞著點D逆時針旋轉(zhuǎn)α(0α180)度后,如果點B恰好落在RtABC的邊上,那么α=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點PAD上,且AP=2,點E是邊AB上的動點,以PE為邊作直角∠EPF,射線PFBC于點F,連接EF,給出下列結(jié)論:①tanPFE=;②a的最小值為10.則下列說法正確的是( )

A.①②都對B.①②都錯C.①對②錯D.①錯②對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi)有一等腰RtABC,ACB=90°,點A在直線l上.過點CCE1于點E,過點BBFl于點F,測量得CE=3,BF=2,則AF的長為( 。

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,AB8,AD6;點E是對角線BD上一動點,連接CE,作EFCEAB邊于點F,以CEEF為鄰邊作矩形CEFG,作其對角線相交于點H

1)如圖2,當(dāng)點F與點B重合時,求CECG的長;

2)如圖3,當(dāng)點EBD中點時,求CECG的長;

3)在圖1,連接BG,當(dāng)矩形CEFG隨著點E的運動而變化時,猜想EBG的形狀?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=5,BC=7,EBC上的動點,將矩形沿直線AE翻折,使點B的對應(yīng)點B'落在∠ADC的平分線上,過點B'作BFBC于點F,求BEF的周長______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點ECD的中點,將BCE沿BE折疊后得到BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計劃的有效實施,學(xué)校隨機(jī)對部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.

學(xué)生選修課程統(tǒng)計表

課程

人數(shù)

所占百分比

聲樂

14

舞蹈

8

書法

16

攝影

合計

根據(jù)以上信息,解答下列問題:

1  ,  

2)求出的值并補(bǔ)全條形統(tǒng)計圖.

3)該校有1500名學(xué)生,請你估計選修“聲樂”課程的學(xué)生有多少名.

4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準(zhǔn)備從這4人中隨機(jī)抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD;

(2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案