【題目】如圖,在矩形ABCD 中,AB=4AD=a,點(diǎn)PAD上,且AP=2,點(diǎn)E是邊AB上的動(dòng)點(diǎn),以PE為邊作直角∠EPF,射線PFBC于點(diǎn)F,連接EF,給出下列結(jié)論:①tanPFE=;②a的最小值為10.則下列說法正確的是( )

A.①②都對(duì)B.①②都錯(cuò)C.①對(duì)②錯(cuò)D.①錯(cuò)②對(duì)

【答案】C

【解析】

,利用矩形ABCD四個(gè)直角,再加上∠EPF為直角,聯(lián)想到構(gòu)造三垂直模型,故過FAD垂線,垂足為G,即有△AEP∽△GPF,且相似比為12,即求得tanPFE

②顯然,若a要取最小值,則F、C要重合(GD重合),又AEPG為對(duì)應(yīng)邊,AE越小則PGPD)越小,當(dāng)AE=0時(shí),PD=0最小,此時(shí)a=2

解:過點(diǎn)FFGAD于點(diǎn)G

∴∠FGP=90°

∵矩形ABCD中,AB=4,∠A=B=90°

∴四邊形ABFG是矩形,∠AEP+APE=90°

FG=AB=4

∵∠EPF=90°

∴∠APE+FPG=90°

∴∠AEP=FPG

∴△AEP∽△GPF

,故①正確;

如圖2,當(dāng)A、E重合,C、F重合,DP重合時(shí),AD最短,此時(shí)a=2,故②錯(cuò)誤.

故選擇:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時(shí)如下結(jié)論:①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個(gè)m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時(shí),yx的增大而增大,則m的取值范圍為m≥2其中錯(cuò)誤結(jié)論的序號(hào)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C在⊙O,AC=AB,動(dòng)點(diǎn)P與點(diǎn)C位于直徑AB的異側(cè),點(diǎn)P在半圓弧AB上運(yùn)動(dòng)(不與A.B兩點(diǎn)重合),連結(jié)BP,過點(diǎn)C作直線PB的垂線CD交直線PBD點(diǎn),連結(jié)CP.

(1)如圖1,在點(diǎn)P運(yùn)動(dòng)過程中,求∠CPD的度數(shù);

(2)如圖2,在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)CPAB時(shí),AC=2時(shí),求△BPC的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CDAB于點(diǎn)G,點(diǎn)FCD上一點(diǎn),且滿足=,連接AF并延長(zhǎng)交⊙O于點(diǎn)E。 連接ADDE,若CF=2AF=3。給出下列結(jié)論:①ADFAED;②FG=2;③tanE=;④SDEF=4 其中正確的是(

A.①②④B.①②③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x32+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn),已知一次函數(shù)ykx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A10)及點(diǎn)B

1)求二次函數(shù)與一次函數(shù)的解析式;

2)拋物線上是否存在一點(diǎn)P,使SABPSABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑的⊙OAB于點(diǎn)D,交BC于點(diǎn)E

(1)求證:BECE;

(2)BD2,BE3,求tanBAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y(x0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)DE.若四邊形ODBE的面積為9,則k的值為(

A. 3B. 6C. 9D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

解方程x4﹣7x2+12=0這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,則x4=y2,原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當(dāng)y=3時(shí),x2=3,x=±,當(dāng)y=4時(shí),x2=4,x=±2.原方程有四個(gè)根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問題.

(1)解方程:(x2+x)2﹣5(x2+x)+4=0;

(2)已知實(shí)數(shù)a,b滿足(a2+b22﹣3(a2+b2)﹣10=0,試求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

同步練習(xí)冊(cè)答案