精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,,以邊上一點為圓心,為半徑的經過點.

1)求的半徑;

2)點為劣弧中點,作,垂足為,求的長.

【答案】1;(2

【解析】

1)作OHABH.解直角三角形求出AB,利用垂徑定理求出AH即可解決問題.

2)如圖2中,連接OP,PA.設OPABH.證明AOP是等邊三角形即可解決問題.

1)作OHABH

RtACB中,∵∠C=90°,∠A=30°BC=1,

AB=2BC=2,

OHAB,

AH=HB=1,

OA=AH÷cos30°=

2)如圖2中,連接OP,PA.設OPABH

OPAB,

∴∠AHO=90°,

∵∠OAH=30°,

∴∠AOP=60°,

OA=OP,

∴△AOP是等邊三角形,

PQOA,

OQ=QA=OA=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市某中學學生會在開展厲行勤儉節(jié)約,反對鋪張浪費的主題教育活動中,在全校范圍內隨機抽取了若干名學生就某日晚飯浪費飯菜情況進行調查,調查內容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學生會根據統計結果,繪制了如下統計表:根據所給信息,回答下列問題:

選項

頻數

頻率

A

36

m

B

n

0.2

C

6

0.1

D

6

0.1

(1)統計表中:m=______;n=______

(2)該中學有1800名學生晚飯在校就餐,根據調查結果,估計當天晚飯有多少人能夠把飯和菜全部吃完?

(3)為了對同學們浪費的行為進行糾正,校學生會從飯和菜都有剩的甲、乙、丙、丁四名同學中任取2位同學進行批評教育,請用列表法或樹狀圖法求恰好抽到甲和丁的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A﹣1,0)和B30)兩點,交y軸于點E

1)求此拋物線的解析式.

2)若直線y=x+1與拋物線交于AD兩點,與y軸交于點F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】y=﹣2x+4直線交x軸于點A,交y軸于點B,拋物線y=﹣xm)(x6)(m0)經過點A,交x軸于另一點C,如圖所示.

1)求拋物線的解析式.

2)設拋物線的頂點為D,連接BD,AD,CD,動點PBD上以每秒2個單位長度的速度由點B向點D運動,同時動點Q在線段CA上以每秒3個單位長度的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設運動時間為t秒.PQ交線段AD于點E

①當∠DPE=∠CAD時,求t的值;

②過點EEMBD,垂足為點M,過點PPNBD交線段ABAD于點N,當PNEM時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為  ;

2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,點D、E分別在邊AB、AC上,則在下列五個條件中:①∠AED=∠B;②DEBC;③;④AD·BCDE·AC;⑤∠ADE=∠C,能滿足ADEACB的條件有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點EAB 的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將繞點順時針旋轉得到,使點的對應點恰好落在邊上,點的對應點為,連接.下列結論一定正確的是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案