【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長為 .
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)根據(jù)矩形的性質(zhì)得到AE∥OC,AE=OC即可證明;
(2)根據(jù)平行四邊形的性質(zhì)得到∠AOD=∠OCF,∠AOF=∠OFC,再根據(jù)等腰三角形的性質(zhì)得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS證明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可證明;
(3)根據(jù)切線長定理可得AD=AF,CH=FH=2,設(shè)AD=x,則AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的長.
(1)解:連接AO,四邊形AECO是平行四邊形.
∵四邊形ABCD是矩形,
∴AB∥CD,AB=CD.
∵E是AB的中點(diǎn),
∴AE=AB.
∵CD是⊙O的直徑,
∴OC=CD.∴AE∥OC,AE=OC.
∴四邊形AECO為平行四邊形.
(2)證明:由(1)得,四邊形AECO為平行四邊形,
∴AO∥EC
∴∠AOD=∠OCF,∠AOF=∠OFC.
∵OF=OC
∴∠OCF=∠OFC.
∴∠AOD=∠AOF.
∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF
∴△AOD≌△AOF.
∴∠ADO=∠AFO.
∵四邊形ABCD是矩形,
∴∠ADO=90°.
∴∠AFO=90°,即AH⊥OF.
∵點(diǎn)F在⊙O上,
∴AH是⊙O的切線.
(3)∵HC、FH為圓O的切線,AD、AF是圓O的切線
∴AD=AF,CH=FH=2,
設(shè)AD=x,則AF=x,AH=x+2,BH=x-2,
在Rt△ABH中,AH2=AB2+BH2,
即(x+2)2=62+(x-2)2,
解得x=
∴AH=+2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是9,點(diǎn)E是AB邊上的一個(gè)動點(diǎn),點(diǎn)F是CD邊上一點(diǎn),CF=4,連接EF,把正方形ABCD沿EF折疊,使點(diǎn)A,D分別落在點(diǎn)A′,D′處,當(dāng)點(diǎn)D′落在直線BC上時(shí),線段AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC關(guān)于直線AC的對稱圖形△AB1C, 若點(diǎn)B1恰好落在y軸上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC下方拋物線上一動點(diǎn);
①連接CD,是否存在點(diǎn)D,使得AC平分∠OCD?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.
②在①的條件下,若P為拋物線上位于AC下方的一個(gè)動點(diǎn),以P、C、A、D為頂點(diǎn)的四邊形面積記作S,則S取何值或在什么范圍時(shí),相應(yīng)的點(diǎn)P有且只有2個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上O,A兩點(diǎn)的距離為4,一動點(diǎn)P從點(diǎn)A出發(fā),按以下規(guī)律跳動:第1次跳動到AO的中點(diǎn)A1處,第2次從A1點(diǎn)跳動到A1O的中點(diǎn)A2處,第3次從A2點(diǎn)跳動到A2O的中點(diǎn)A3處,按照這樣的規(guī)律繼續(xù)跳動到點(diǎn)A4,A5,A6,…,An.(n≥3,n是整數(shù))處,那么線段AnA的長度為________(n≥3,n是整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O的直徑AB=2,點(diǎn)D在AB的延長線上,DC與O相切于點(diǎn)C,連接AC.若∠A=30°,則CD長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com