【題目】已知:是的內(nèi)接三角形,且,直徑交于點.
如圖1 ,求證:;
如圖2,將線段繞點順時針旋轉(zhuǎn)得到線段,旋轉(zhuǎn)角為連接分別交,于點,連接,求證: ;
如圖3,在(2)的條件下,當(dāng)時,交于點若求的長.
【答案】見解析;見解析;6
【解析】
(1)如圖 1,連接OB,OC,首先證明AO是線段的垂直平分線,再根據(jù)等腰三角形三線和一的性質(zhì)即可證明;
(2)首先根據(jù)旋轉(zhuǎn)的性質(zhì)得到,又因為,從而得到,即可推出,再根據(jù),即可推出結(jié)論;
(3)過點作交的延長線于點,過點作交的延長線于點,過點作于點,連接先證明,再證明四邊形是矩形,推出,,在中,
,求出,在中,求出,在中, ,最后證明是等邊三角形,即可求出OA的長度.
(1)如圖 1,連接OB,OC,
,
點在線段的垂直平分線上,
同理點在線段的垂直平分線上,
直線是線段的垂直平分線,
;
如圖 2
∵,,
∴,
∴,
又∵,
∴;
如圖 3,過點作交的延長線于點,過點作交的延長線于點,過點作于點,連接
,
,
又,
∴,
,
,
四邊形是矩形,
,
,
,
,
∴,
,
,
,
,
,
即,
,
∴,
在中,
∵,
,
,
∴,
在中,,
在中, ,
,
∴是等邊三角形,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,單位長度為1的網(wǎng)格坐標(biāo)系中,一次函數(shù) 與坐標(biāo)軸交于A、B兩點,反比例函數(shù)(x>0)經(jīng)過一次函數(shù)上一點C(2,a).
(1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;
(2)依據(jù)圖像直接寫出當(dāng)時不等式的解集;
(3)若反比例函數(shù)與一次函數(shù)交于C、D兩點,使用直尺與2B鉛筆構(gòu)造以C、D為頂點的矩形,且使得矩形的面積為10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點,,為圓心,以的長為半徑作,,.三段弧所圍成的圖形就是一個曲邊三角形,如果一個曲邊三角形的周長為,那么這個曲邊三角形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期開學(xué)初,學(xué)校體育組對九年級某班50名學(xué)生進(jìn)行了跳繩項目的測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.
根據(jù)統(tǒng)計圖解答下列問題:
(1)本次測試的學(xué)生中,得4分的學(xué)生有多少人?
(2)本次測試的平均分是多少分?
(3)通過一段時間的訓(xùn)練,體育組對該班學(xué)生的跳繩項目進(jìn)行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ,若的頂點在射線上,且,點在射線AN上,當(dāng)是銳角三角形時,且的長是整數(shù),則的長為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣3,3)、B(﹣4,1)、C(﹣1,1)是平面直角坐標(biāo)系上的三點.
(1)請畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A1B1C1;
(2)請畫出△A1B1C1關(guān)于y軸對稱△A2B2C2;
(3)判斷以A、A1、A2為頂點的三角形的形狀.(無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,連接AD、BE交于點F.
(1)求∠AFE的度數(shù);
(2)求證:ACDF=BDBF;
(3)連接FC,若CF⊥AD時,求證:BD=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB, AC上,若BC=6,AD=4,求正方形PQMN的邊長.
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)B N′并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN.小波把線段BN稱為“波利亞線”.
(3)推理:證明圖2中的四邊形PQMN 是正方形.
(4)拓展:在(2)的條件下,于波利業(yè)線B N上截取NE=NM,連結(jié)EQ,EM(如圖3).當(dāng)tan∠NBM=時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,,直線與交于點.
(1)如圖1,若,填空:①的值為____________;
②的度數(shù)為___________.
(2)如圖2,若,求的值(用含的式子表示)及的度數(shù);
(3)若,,,將三角形繞著點在平面內(nèi)旋轉(zhuǎn),直接寫出當(dāng)點、、在同一直線上時,線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com