【題目】如圖,在中,點(diǎn)分別是,的中點(diǎn),連接,,,且,過(guò)點(diǎn)的延長(zhǎng)線(xiàn)于點(diǎn).

1)求證:四邊形是菱形;

2)在不添加任何輔助線(xiàn)和字母的情況下,請(qǐng)直接寫(xiě)出圖中與面積相等的所有三角形(不包括.

【答案】(1)證明見(jiàn)解析;(2)、、.

【解析】

1)由題意易得,EFBC平行,結(jié)合,可得四邊形BCFE是平行四邊形,然后求出鄰邊,則四邊形BCFE是菱形;

2)根據(jù)等底等高的兩個(gè)三角形面積相等以及三角形的中線(xiàn)將三角形分成面積相等的兩部分進(jìn)行求解即可.

1)證明:∵、分別是、的中點(diǎn),

,

,

∴四邊形是平行四邊形,

,,

∴平行四邊形是菱形;

2)解:①∵由(1)知,四邊形BCFE是菱形,

BCFE,BCEF

∴△FEC與△BEC是等底等高的兩個(gè)三角形,

SFECSBEC;

②△AEB與△BEC是等底同高的兩個(gè)三角形,則SAEBSBEC;

SADCSABC,SBECSABC,則SADCSBEC;

SBDCSABC,SBECSABC,則SBDCSBEC

綜上所述,與△BEC面積相等的三角形有:△FEC、△AEB、△ADC、△BDC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列4×4(邊長(zhǎng)為1)的網(wǎng)格中,已知ABC的三個(gè)頂點(diǎn)A,BC在格點(diǎn)上,請(qǐng)分別按不同要求在網(wǎng)格中描出一個(gè)格點(diǎn)D,并寫(xiě)出點(diǎn)D的坐標(biāo).

1)將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后所得的三角形,點(diǎn)A旋轉(zhuǎn)后落點(diǎn)為D;

2)經(jīng)過(guò)A,BC三點(diǎn)有一條拋物線(xiàn),請(qǐng)找到點(diǎn)D,使點(diǎn)D也落在這條拋物線(xiàn)上;

3)經(jīng)過(guò)A,B,C三點(diǎn)有一個(gè)圓,請(qǐng)找到一個(gè)橫坐標(biāo)為2的點(diǎn)D,使點(diǎn)D也落在這個(gè)圓上,

①點(diǎn)D的坐標(biāo)為   ;

②點(diǎn)D的坐標(biāo)為   ;

③點(diǎn)D的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點(diǎn)E處觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角=,在離建設(shè)物CD 25米遠(yuǎn)的F點(diǎn)觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角=B,F,C在一條直線(xiàn)上).

1)求辦公樓AB的高度;

2)若要在AE之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)男生200米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為DC、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:

1a   ,b   ,c   ;

2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為   度;

3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生200米跑比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,益陽(yáng)市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin38.5°=0.62cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45cos26.5°=0.89,tan26.5°=0.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示:下列4個(gè)結(jié)論

abc0

b2ac

ax2+bx+c0的兩根分別為﹣31

a2b+c0

其中正確的是(  )

A.①②B.②③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABAD,∠A60°,

1)如圖1,過(guò)點(diǎn)DDHAB于點(diǎn)H,MC平分∠DCBAB邊于點(diǎn)M,過(guò)MMNABAD邊于點(diǎn)N,ANND23,平行四邊形ABCD的面積為60,求MN的長(zhǎng)度.

2)如圖2,E、F分別為邊AB、CD上一點(diǎn),且AEADDF,連接BF、EC交于點(diǎn)O,GAD延長(zhǎng)線(xiàn)上一點(diǎn),連接GEGFGO,若∠GFD=∠EFB,求證:GOEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,回答問(wèn)題.

材料:求圓外一定點(diǎn)到圓上距離最小值是安徽省中考數(shù)學(xué)較為常見(jiàn)的一種題型,此類(lèi)題型試題有時(shí)出題者將圓隱藏,故又稱(chēng)為隱圓問(wèn)題.解決這類(lèi)問(wèn)題,關(guān)鍵是要找到動(dòng)點(diǎn)的運(yùn)動(dòng)軌跡,即該動(dòng)點(diǎn)是繞哪一個(gè)定點(diǎn)旋轉(zhuǎn),且能保持旋轉(zhuǎn)半徑不變.從而找到動(dòng)點(diǎn)所在的隱藏圓,進(jìn)面轉(zhuǎn)換成圓外一點(diǎn)到圓心的距離減半徑,求得最小值.

解決問(wèn)題:

1)如圖①,圓O的半徑為1,圓外一點(diǎn)A到圓心的距離為3,圓上一動(dòng)點(diǎn)B,當(dāng)A、O、B滿(mǎn)足條件____________時(shí),有最小值為____________.

2)如圖②,等腰兩腰長(zhǎng)為5,底邊長(zhǎng)為6,以A為圓心,2為半徑作圓,圓上動(dòng)點(diǎn)P的距離最小值為__________.

3)如圖③,P、Q分別是射線(xiàn)、上兩個(gè)動(dòng)點(diǎn),C是線(xiàn)段的中點(diǎn),且,則在線(xiàn)段滑動(dòng)的過(guò)程中,求點(diǎn)C運(yùn)動(dòng)形成的路徑長(zhǎng),并說(shuō)明理由.

4)如圖④,在矩形中,,,點(diǎn)E中點(diǎn),點(diǎn)F上一點(diǎn),把沿著翻折,點(diǎn)B落在點(diǎn)處,求的最小值,并說(shuō)明理由.

5)如圖⑤,在中,,,以邊中點(diǎn)O為圓心,作半圓與相切,點(diǎn)P,Q分別是邊和半圓上的動(dòng)點(diǎn),連接,求長(zhǎng)的最小值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點(diǎn),BEAP,DFAP,垂足分別是點(diǎn)E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結(jié)BF,如課=.求證:EF=EP.

查看答案和解析>>

同步練習(xí)冊(cè)答案