【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是(
A.等邊三角形
B.平行四邊形
C.正六邊形
D.五角星

【答案】C
【解析】解:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故此選項不合題意; B、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形.故此選項不合題意;
C、是軸對稱圖形,又是中心對稱圖形.故此選項符合題意;
D、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故此選項不合題意.
故選:C.
【考點精析】本題主要考查了軸對稱圖形的相關(guān)知識點,需要掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上有A、B兩點,A在B的左側(cè),已知點B對應(yīng)的數(shù)為2,點A對應(yīng)的數(shù)為a.

(1)若a=﹣3,則線段AB的長為 (直接寫出結(jié)果);

(2)若點C在線段AB之間,且AC﹣BC=2,求點C表示的數(shù)(用含a的式子表示);

(3)在(2)的條件下,點D是數(shù)軸上A點左側(cè)一點,當AC=2AD,BD=4BC,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是射線BE上一點,過AACBF,垂足為C,CDBE,垂足為D.給出下列結(jié)論:①∠1是∠ACD的余角;②圖中互余的角共有3對;③∠1的補角只有∠DCF;④與∠ADC互補的角共有3個.其中正確結(jié)論有_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例如:如圖,若點A,B在數(shù)軸上分別對應(yīng)的數(shù)為ab(a<b),則AB的長度可以表示為AB=ba

請你用以上知識解決問題:

如圖,一個點從數(shù)軸上的原點開始,先向左移動2個單位長度到達A點,再向右移動3個單位長度到達B點,然后向右移動5個單位長度到達C

(1)請你在圖的數(shù)軸上表示出A,B,C三點的位置

(2)若點A以每秒1個單位長度的速度向左移動,同時,點B和點C分別以每秒2個單位長度和3個單位長度的速度向右移動,設(shè)移動時間為t秒.

t=2時,求ABAC的長度;

試探究:在移動過程中,3AC-4AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)成命題。

(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請證明;若不是,請舉出反例;

(2)寫出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“如果…,那么….”的形式)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在育民中學舉辦的藝術(shù)節(jié)活動中,·二班學生成績十分突出,小剛將全班獲獎作品情況繪成如圖的條形統(tǒng)計圖(成績?yōu)?/span>60分以上的都是獲獎作品)

(1)請根據(jù)圖表計算出八·二班學生有多少件作品獲獎?

(2)用計算器求出八·二班獲獎作品的平均成績.

(3)求出這次活動中獲獎作品成績的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD平移后得到四邊形ABCD

觀察圖形后完成下列問題

(1)四邊形ABCD先向   平移   個格,再向   平移   個格后得到四邊形ABCD′.

(2)圖中有哪些相等的線段?有哪些平行的線段?

(3)S四邊形ABCDS四邊形ABCD有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

如圖,若點B把線段分成兩條長度相等的線段ABBC,則點B叫做線段AC的中點.

回答問題:

(1)如圖,在數(shù)軸上,點A所表示的數(shù)是﹣2,點B所表示的數(shù)是0,點C所表示的數(shù)是3.

A是線段DB的中點,則點D表示的數(shù)是   ;

E是線段AC的中點,求點E表示的數(shù).

(2)在數(shù)軸上,若點M表示的數(shù)是m,點N所表示的數(shù)是n,點P是線段MN的中點.

若點P表示的數(shù)是1,則mn可能的值是   (填寫符合要求的序號);

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含m、n的代數(shù)式表示點P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年9月,莉莉進入八中初一,在準備開學用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標價都是20/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標價的九折出售.

(1)若設(shè)莉莉要購買xx>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;

(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?

查看答案和解析>>

同步練習冊答案