【題目】如圖,兩直線 OM 與 ON 垂直,點(diǎn) A,B 分別在射線 OM,ON 上移動,BC 平分∠DBO,BC 與∠OAB 的平分線 AC 交于點(diǎn) C.
(1)若∠BAO=60°,求∠C 的度數(shù);
(2)若∠BAO 的度數(shù)為 x 度,求∠C 的度數(shù).
【答案】(1)45;(2)45°
【解析】
根據(jù)AC是角平分線結(jié)合三角形內(nèi)角和定理可以用∠BAO表示出∠BAC與∠OBA,從而可以求出答案,解出(1);(2)中將∠BAO的度數(shù)換為X度即可,思路同(1)推理解答即可
解:(1)∵∠BAO=60,∴∠DBO=150,
∵BC 平分∠DBO,∴∠CBA=105,
∵AC 平分∠OAB,
∴∠C=180-105-30=45.
(2)因?yàn)椤螧AO=x 度,則∠BAC=度,∠OBA=90°-x°
所以∠DBO=180°-∠OBA=180°-(90°-x°)=90°+x°
因?yàn)锽C平分∠DBO,所以∠CBA==
所以∠C=180°-∠CBA-∠BAC=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)營養(yǎng)套餐的合理搭配,某電商推出兩款適合不同人群的甲、乙兩種袋裝的混合粗糧.甲種袋裝粗糧每袋含有3千克A粗糧,1千克B粗糧,1千克C粗糧;乙種袋裝粗糧每袋含有1千克A粗糧,2千克B粗糧,2千克C粗糧.甲、乙兩種袋裝粗糧每袋成本分別等于袋中的A、B、C三種粗糧成本之和.已知每袋甲種粗糧的成本是每千克A種粗糧成本的7.5倍,每袋乙種粗糧售價比每袋甲種粗糧售價高20%,乙種袋裝粗糧的銷售利潤率是20%.當(dāng)銷售這兩款袋裝粗糧的銷售利潤率為24%時,該電商銷售甲、乙兩種袋裝粗糧的袋數(shù)之比是_____(商品的銷售利潤率=×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD和正方形EFGC面積分別為64和16.
(1)請寫出點(diǎn)A,E,F的坐標(biāo);
(2)求S△BDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)從點(diǎn)出發(fā)沿圖1的邊框(邊框拐角處都互相垂直)按的路徑移動,相應(yīng)的的面積關(guān)于移動路程的關(guān)系圖象如圖2,若,根據(jù)圖象信息回答下列問題:
(1)圖1中___________.
(2)圖2中___________;___________.
(3)當(dāng)的面積為2時,求對應(yīng)的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC.
(1)如圖(1),∠C>∠B,若 AD⊥BC 于點(diǎn) D,AE 平分∠BAC,你能找出∠EAD 與∠B,∠C 之間的數(shù)量關(guān)系嗎?并說明理由.
(2)如圖(2),AE 平分∠BAC,F 為 AE 上一點(diǎn),FM⊥BC 于點(diǎn) M,∠EFM 與∠B,∠C之間有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時, 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對“希望工程捐款活動”進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù)如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長方形高度之比為3:4:5:8,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
他們一共抽查了多少人?
這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
若該校共有1500名學(xué)生,請你估算全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、E三點(diǎn)在同一條直線上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求證:BC=DE
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:(1)在∠ABC內(nèi)找一點(diǎn)M,使它到∠ABC的兩邊的距離相等,并且到點(diǎn)A、C的距離也相等.(寫出作法,保留作圖痕跡)
(2)已知如下圖,求作△ABC關(guān)于對稱軸l的軸對稱圖形△AB′C′.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com