【題目】如圖,已知一拋物線形大門,其地面寬度一同學(xué)站在門內(nèi),在離門腳遠(yuǎn)的處,垂直地面立

起一根長的木桿,其頂端恰好頂在拋物線形門上處.根據(jù)這些條件,請你求出該大門的高

【答案】該大門的高

【解析】

解決拋物線的問題,需要合理地建立平面直角坐標(biāo)系,用二次函數(shù)的性質(zhì)解答,建立直角坐標(biāo)系的方法有多種,大體是以拋物線對稱軸為y軸(包括頂點在原點),拋物線經(jīng)過原點等等.

解法一:如圖,建立平面直角坐標(biāo)系.

設(shè)拋物線解析式為

由題意知、兩點坐標(biāo)分別為,

、兩點坐標(biāo)代入拋物線解析式得

解得

拋物線的解析式為

該大門的高

解法二:如圖,建立平面直角坐標(biāo)系.

設(shè)拋物線解析式為

由題意得、兩點坐標(biāo)分別為,

、兩點坐標(biāo)代入

解得

該大門的高

說明:此題還可以以所在直線為軸,中點為原點,建立直角坐標(biāo)系,可得拋物線解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強課外閱讀,開闊視野,我校開展了書香校園的主題活動.學(xué)校隨機抽取了部分學(xué)生,對他們一周的課外閱讀時間進行調(diào)查,繪制成如下頻數(shù)分布表和不完整的頻數(shù)直方

圖:

請根據(jù)圖表信息回答下列問題:

(1)頻數(shù)分布表中的a=_______,b=_______;

(2)將頻數(shù)直方圖補充完整;

(3)全校共有學(xué)生1200人,若規(guī)定閱讀時間超過2小時則評為優(yōu)秀閱讀員,請估計能評為優(yōu)秀閱讀員的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙ P的圓心坐標(biāo)是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙ P截得的弦AB的長為,則a的值是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-2(k+1)xk2+2k=0.

(1)求證:k取任何實數(shù)值,方程總有不相等的實數(shù)根;

(2)若等腰△ABC的周長為14,另兩邊長b,c恰好是這個方程的兩個根,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AEAB,AFAC,AEAB,AFAC,

(1)圖中ECBF有怎樣的數(shù)量和位置關(guān)系?試證明你的結(jié)論.

(2)連接AM,求證:MA平分∠EMF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仙降是瑞安重要的制鞋基地,其生產(chǎn)的鞋子暢銷世界各地,某制鞋企業(yè)欲將件產(chǎn)品運往三地銷售,運往地的費用為18/件,運往地的費用為20/件,運往地的費用為17/件,要求運往地的件數(shù)與運往地的件數(shù)相同. 設(shè)安排件產(chǎn)品運往地.

1)若①運往地件數(shù)為 件(用含的代數(shù)式表示);②若總運費不超過1850元,則運往地至少有多少件?

2)若總運費為1900元,則的最大值為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形A2019B2019C2019D2019的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,經(jīng)過CCD⊥AB于點D,CF⊙O的切線,過點AAE⊥CFE,連接AC.

(1)求證:AE=AD.

(2)AE=3,CD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),點在該函數(shù)的圖象上,點軸、軸的距離分別為.設(shè),下列結(jié)論中:

沒有最大值;②沒有最小值;③時,的增大而增大;

④滿足的點有四個.其中正確結(jié)論的個數(shù)有(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案