【題目】在ABCD中,AC、BD交于點(diǎn)O,過(guò)點(diǎn)O作直線(xiàn)EF、GH,分別交ABCD的四條邊于E、G、F、H四點(diǎn),連接EG、GF、FH、HE.
(1)如圖①,四邊形EGFH的形狀是___;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是___;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是___;
(4)如圖④,在(3)的條件下,若AC⊥BD,四邊形EGFH的形狀是___.
【答案】平行四邊形菱形菱形正方形
【解析】
(1)由于平行四邊形對(duì)角線(xiàn)的交點(diǎn)是它的對(duì)稱(chēng)中心,即可得出OE=OF、OG=OH;根據(jù)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形即可判斷出EGFH的性質(zhì);
(2)當(dāng)EF⊥GH時(shí),平行四邊形EGFH的對(duì)角線(xiàn)互相垂直平分,故四邊形EGFH是菱形;
(3)當(dāng)AC=BD時(shí),對(duì)四邊形EGFH的形狀不會(huì)產(chǎn)生影響,故結(jié)論同(2);
(4)當(dāng)AC=BD且AC⊥BD時(shí),四邊形ABCD是正方形,則對(duì)角線(xiàn)相等且互相垂直平分;可通過(guò)證△BOG≌△COF,得OG=OF,從而證得菱形的對(duì)角線(xiàn)相等,根據(jù)對(duì)角線(xiàn)相等的菱形是正方形即可判斷出EGFH的形狀.
(1)四邊形EGFH是平行四邊形;
∵ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,
∴點(diǎn)O是ABCD的對(duì)稱(chēng)中心;
∴EO=FO,GO=HO;
∴四邊形EGFH是平行四邊形;
(2)∵四邊形EGFH是平行四邊形,EF⊥GH,
∴四邊形EGFH是菱形;
(3)菱形;
由(2)知四邊形EGFH是菱形,
當(dāng)AC=BD時(shí),對(duì)四邊形EGFH的形狀不會(huì)產(chǎn)生影響;
(4)四邊形EGFH是正方形;
證明:∵AC=BD,
∴ABCD是矩形;
又∵AC⊥BD,
∴ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;
∠BOG+∠BOF=∠COF+∠BOF=90°
∴∠BOG=∠COF;
∴△BOG≌△COF(ASA);
∴OG=OF,同理可得:EO=OH,
∴GH=EF;
由(3)知四邊形EGFH是菱形,
又EF=GH,
∴四邊形EGFH是正方形.
故答案為:(1). 平行四邊形 (2). 菱形 (3). 菱形 (4). 正方形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品廠(chǎng)生產(chǎn)一種汽車(chē)裝飾品,每件生產(chǎn)成本為20元,銷(xiāo)售價(jià)格在30元至80元之間(含30元和80元),銷(xiāo)售過(guò)程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷(xiāo)售量y(萬(wàn)個(gè))與銷(xiāo)售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時(shí),求y與x的函數(shù)關(guān)系式;
(2)求出該廠(chǎng)生產(chǎn)銷(xiāo)售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷(xiāo)售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;
(3)銷(xiāo)售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=2x+4與x軸、y軸分別交于點(diǎn)A、B,以OB為底邊在y軸右側(cè)作等腰△OBC,將△OBC沿y軸折疊,使點(diǎn)C恰好落在直線(xiàn)AB上,則點(diǎn)C的坐標(biāo)為( 。
A.(1,2)B.(4,2)C.(3,2)D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+4與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求△AOB的面積;
(2)過(guò)B點(diǎn)作直線(xiàn)BC與x軸相交于點(diǎn)C,若△ABC的面積是16,求點(diǎn)C的坐標(biāo);
(3)若P是坐標(biāo)軸上一點(diǎn),且PA=PB,求P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線(xiàn)段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線(xiàn)段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.
求證:(1)AE=BF;(2)AE⊥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,分別平分和,、交于點(diǎn).
(1)直接寫(xiě)出與的數(shù)量關(guān)系;
(2)若,利用(1)的關(guān)系,求出的度數(shù);
(3)利用(2)的結(jié)果,試判斷、、的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ABC=90°,點(diǎn)A,B分別在坐標(biāo)軸上.
(1)如圖①,若點(diǎn)C的橫坐標(biāo)為5,求點(diǎn)B的坐標(biāo).
(2)如圖②,若BC交x軸于M,過(guò)C作CD⊥BC交y軸于D . 求證:BC-CD=MC.
(3)如圖③,若點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B是y軸正半軸上的一個(gè)動(dòng)點(diǎn),分別以OB,AB為直角邊在第一、第二象限作等腰Rt△OBF(∠OBF=90°)、等腰Rt△ABE(∠ABE=90°),連接EF交y軸于點(diǎn)P,當(dāng)點(diǎn)B在y軸上運(yùn)動(dòng)時(shí),PB的長(zhǎng)度是否發(fā)生改變?若不變,求出PB的值;若變化,求PB的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C'處,連接C'D交AB于點(diǎn)E,連接BC',當(dāng)△BC'D是直角三角形時(shí),DE的長(zhǎng)為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com