【題目】如圖,有一張直角三角形紙片,兩直角邊長AC=6cm,BC=8cm,將△ABC折疊,使點B與點A重合,折痕為DE,則CD等于( )
A. cm
B. cm
C. cm
D. cm
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形BCDE為平行四邊形,點A在BE的延長線上且AE=EB.連接EC,AC,AD.
(1)求證:△AED≌△EBC.
(2)若∠ACB=90°,則四邊形AECD是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超越公司將某品牌農(nóng)副產(chǎn)品運往新時代市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應值如下表:
v(千米/小時) | 75 | 80 | 85 | 90 | 95 |
t(小時) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;
(2)汽車上午7:30從超越公司出發(fā),能否在上午10:00之前到達新時代市場?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結(jié)論;
(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形(不證明)
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?_____(不證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題原型:如圖①,在銳角中,,AD⊥BC于D,在AD上取點E,使,連結(jié)BE.求證:.問題拓展:如圖②,在問題原型的條件下,為的中點,連結(jié)并延長至點,使,連結(jié).
圖①圖②
(1)判斷線段與的大小關(guān)系,并說明理由.(2)若,直接寫出、兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系XOY中的點A,給出如下定義:若存在點B(不與點A重合,且直線AB不與坐標軸平行或重合),過點A作直線m//x軸,過點B作直線n//y軸,直線m、n相交于點 C.當線段AC、BC的長度相等時,稱點B為點A的等距點,稱△ABC的面積為點A的等距面積.
例如:如圖,點A(2,1),點B(5,4),因為AC=BC=3,所以點B為點A的等距點,此時點A的等距面積為.
(1)點A的坐標是(0,1),在點B1(-1,0),B2(2,3),B3(-2,-2)中,點A的等距點為 ;
(2)點A的坐標是(-3,1),點A的等距點B在第三象限,且點A的等距面積等于,求此時點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】取一副三角板按如圖拼接,固定三角板ADC,將三角板ABC繞點A按順時針方向旋轉(zhuǎn)一個大小為的角()得三角形ABC′如圖所示.
試問:(1)當旋轉(zhuǎn)到如圖的位置時,則= °;
(2)當= °時,能使如圖中3的AB//CD;
(3)連接BD,當時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術(shù)指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com